6th International Conference on Signal and Image Processing (SIPRO 2020)

July 25-26, 2020, London, United Kingdom

DESIGN OF ACTIVE INDUCTOR AND STABILITY TEST FOR PASSIVE RLC LOW-PASS FILTERS

Minh Tri Tran^{*}, Anna Kuwana, Haruo Kobayashi

- 1. Research Background
- Reviews of Complex Functions
- Transfer Function and Its Self-loop Function
- Limitations of Conventional Methods
- 2. Analysis of High-Order Transfer Functions
- Behaviors of High-order Passive Transmission Spaces
- Numerical Examples and Design of Active Inductor
- 3. Experimental Results
- Measurements of Self-loop Functions in RLC networks
- Operating region of Active Serial RLC Low-pass Filter
- 4. Conclusions

1. Research Background Motivation of Study

Large overshoots + ringing + unwanted voltage transients

→ Damped oscillation noise
→ Unstable system

Ringing occurs in
both with and without
feedback systems.

STABILITY TEST

 \odot Ringing affects both input and output signals.

Objectives and Achievements

Objectives

- Investigation of operating region of high-order systems in both time and frequency domains
- → Over-damping (high delay in rising time)
- \rightarrow Critical damping (max power propagation)
- Under-damping (overshoot and ringing)

Achievements

 Design of active inductor and measurement of self-loop function in active serial RLC LPF

1. Research Background Approaching Methods

Passive RLC Low-pass Filter Vin = 1 Vin = 1Vi

Balun transformer

Active RLC Low-pass Filter

Implementation of active RLC LPF

1. Research Background Reviews of Complex Functions

Complex function with frequency variable

$$H(\omega) = \operatorname{Re}(\omega) + j\operatorname{Im}(\omega) = \operatorname{Real}\{H(\omega)\} + j\operatorname{Imag}\{H(\omega)\}$$

In complex plane domain

 $H(\omega) = \begin{cases} \operatorname{Re}(\omega) = \operatorname{Real}\{H(\omega)\} \\ \operatorname{Im}(\omega) = \operatorname{Imag}\{H(\omega)\} \\ \operatorname{Fre}(\omega) = \operatorname{angular frequency} \end{cases}$

In spectrum domain

$$H(\omega) = |H(\omega)|e^{j\theta(\omega)}$$
$$|H(\omega)| = \sqrt{\left[\operatorname{Re}\left\{H(\omega)\right\}\right]^{2} + \left[\operatorname{Im}\left\{H(\omega)\right\}\right]^{2}}$$
$$\theta(\omega) = \arctan\left(\frac{\operatorname{Im}\left\{H(\omega)\right\}}{\operatorname{Re}\left\{H(\omega)\right\}}\right)$$

OPOlar chart (Nyquist chart)

Magnitude-frequency, angular-frequency plots (Bode plots)
 Magnitude-angular diagrams (Nicholas diagrams)

Transfer Function and Its Self-loop Function

Linear system
Input
$$V_{in}(\omega) \longrightarrow H(\omega) \longrightarrow V_{out}(\omega)$$

 $A(\omega)$: Open loop function

- $H(\omega)$: Transfer function
- $L(\omega)$: Self-loop function

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

 $H(\omega) = \frac{A(\omega)}{0} = \infty$

Unstable system

Constraint for oscillation

$$1 + L(\omega) = 0 \quad \Longrightarrow \begin{cases} |L(\omega)| = 1 \\ \angle L(\omega) = -180^{\circ} \end{cases} \quad \Leftrightarrow \qquad \begin{array}{c} \text{PHASE MARGIN} \\ \text{AT UNITY GAIN} \end{array}$$

1. Research Background Signal Flow Graph for Transfer Function

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

Output voltage

$$V_{out}(\omega) = A(\omega) \left[V_{in}(\omega) - \frac{L(\omega)}{A(\omega)} V_{out}(\omega) \right]$$

Negative feedback Network

Signal flow graph

To meet the specified requirements • High stability • Fast transient response, and

Good steady-state performance.

Proposed Comparison Measurement Technique

Sequence of steps:

- (i) Measurement of open loop function $A(\omega)$,
- (ii) Measurement of transfer function H(ω), and
- (iii) Derivation of self-loop function.

Proposed Alternating Current Conservation (1)

Idea: Alternating current is conserved.

Incident current = Transmitted current

Proposed Alternating Current Conservation (2)

Proposed Alternating Current Conservation (3)

Alternating current conservation using balun transformer

Self-loop function:

$$L(\omega) = -\frac{V_{inc}}{V_{trans}}$$

Balun transformer (10 mH inductance)

1. Research Background Proposed Widened Superposition Principle

• Multi-source systems, feedback networks (op amps, amplifiers), polyphase filters, complex filters...

Limitations of Conventional Methods (1)

[7] Middlebrook, R.D., "Measurement of Loop Gain in Feedback Systems", Int. J. Electronics, vol 38, No. 4, pp. 485-512, 1975.

Measurement of loop gain

- Current injection
- Voltage injection

Current injection method

Voltage injection method

→ Difficult to measure self-loop function in analog circuits

Limitations of Conventional Methods (2)

[9] A. S. Sedra and K. C. Smith, "Microelectronic Circuits," 6th ed. Oxford University Press, New York, 2010.

Measurement of loop gain

Replica measurement

→ Difficult to measure two real different circuits

Limitations of Conventional Methods (3)

- o Conventional Superposition:
- →Solving for every source voltage and current, perhaps several times.
- Conventional measurement of loop gain (Middle Brook's)
- → Applying only in feedback systems (switching DC-DC converters).
- Conventional replica measurement of loop gain
- \rightarrow Using two identical networks (difficult in practical measurement).
- **•Conventional Nyquist's stability condition**
- \rightarrow Using in theoretical analysis for feedback systems (Lab simulation).

 Conventional concepts, analysis and measurement of loop gain are not unique.

2. Analysis of High-Order Transfer Functions **Second-order Parallel RLC Low-pass Filter**

Apply superposition principle at Vout

$$V_{out}\left(\frac{1}{R} + \frac{1}{Z_C} + \frac{1}{Z_L}\right) = \frac{V_{in}}{Z_L};$$

Transfer function & self-loop function:

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + a_0 (j\omega)^2 + a_1 j\omega};$$
$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;$$

Where:

$$a_0 = LC; \quad a_1 = \frac{L}{R};$$

$$\omega_0 = 1/\sqrt{LC};$$

$$|Z_L| = \omega_0 L; \quad |Z_C| = 1/\omega_0 C;$$

16

Operating regions

• Over-damping: $\frac{1}{LC} < \left(\frac{R}{2L}\right)^2 \Leftrightarrow |Z_L| = |Z_C| < R/2$ • Critical damping: $\frac{1}{LC} = \left(\frac{R}{2L}\right)^2 \Leftrightarrow |Z_L| = |Z_C| = R/2$ • Under-damping: $\frac{1}{LC} > \left(\frac{R}{2L}\right)^2 \Leftrightarrow |Z_L| = |Z_C| > R/2$

2. Analysis of High-Order Transfer Functions Behaviors of Second-order Transfer Function

Second-order transfer function: $H(\omega) = \frac{1}{1 + a_0(j\omega)^2 + a_1j\omega}$

Case	Over-damped	Critically damped	Under-damped		
Delta (Δ)	$\frac{1}{a_0} < \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 > 0$	$\frac{1}{a_0} = \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 = 0$	$\frac{1}{a_0} > \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 < 0$		
$\begin{array}{c} \textbf{Module} \\ H(\omega) \end{array}$	$\frac{\frac{1}{a_0}}{\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}$	$\frac{\frac{1}{a_0}}{\left[\omega^2 + \left(\frac{a_1}{2a_0}\right)^2\right]}$	$\boxed{\frac{\frac{1}{a_{0}}}{\sqrt{\left(\omega - \sqrt{\frac{1}{a_{0}} - \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\right)^{2} + \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\sqrt{\left(\omega + \sqrt{\frac{1}{a_{0}} - \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\right)^{2} + \left(\frac{a_{1}}{2a_{0}}\right)^{2}}}$		
Angular $\theta(\omega)$	$-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}-\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}+\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}\right)$	$-2 \arctan\left(\frac{2a_0\omega}{a_1}\right)$	$-\arctan\left(\frac{\omega - \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right) - \arctan\left(\frac{\omega + \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)$		
$\omega_{cut} = \frac{a_1}{2a_0}$	$ H(\omega_{cut}) < \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) > -\frac{\pi}{2}$	$ H(\omega_{cut}) = \frac{2a_0}{a_1} \theta(\omega_{cut}) = -\frac{\pi}{2}$	$ H(\omega_{cut}) > \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) < -\frac{\pi}{2}$		

2. Analysis of High-Order Transfer Functions Example of Second-order Transfer Function

Magnitude of transfer function

•Under-damping:

$$\frac{\sqrt{3}-1}{2} < \omega < \frac{\sqrt{3}+1}{2} \Rightarrow |H_1(\omega)| > 1 \qquad \left(\omega_1 = \frac{\sqrt{3}-1}{2} < \omega_{cut} = 1\right)$$

 $H_1(\omega) = \frac{1}{(j\omega)^2 + j\omega + 1} \Longrightarrow |H_1(\omega)| = \frac{1}{\sqrt{(\omega - \frac{\sqrt{3}}{2})^2 + \frac{1}{\sqrt{(\omega + \frac{1}{2})^2 + \frac{1}{2}}}}}}}}}}}}}}}}}}}}}}}}}$

•Critical damping: H

$$H_{2}(\omega) = \frac{1}{(j\omega)^{2} + 2j\omega + 1} \Longrightarrow |H_{2}(\omega)| = \frac{1}{\omega^{2} + 1} \qquad (\omega_{cut} = 1)$$

•Over-damping:

$$H_{3}(\omega) = \frac{1}{\left(j\omega\right)^{2} + 3j\omega + 1} \Rightarrow \left|H_{3}(\omega)\right| = \frac{1}{\sqrt{\omega^{2} + \left(\frac{3-\sqrt{5}}{2}\right)^{2}}\sqrt{\omega^{2} + \left(\frac{3+\sqrt{5}}{2}\right)^{2}}}$$
$$\frac{3-\sqrt{5}}{2} < \omega < \frac{3+\sqrt{5}}{2} \Rightarrow \left|H_{3}(\omega)\right| < 1 \qquad \left(\omega_{1} = \frac{3-\sqrt{5}}{2} < \omega_{cut} = 1\right)$$

2. Analysis of High-Order Transfer Functions Simulations of Second-order Transfer Function

Polar chart of transfer function

Magnitude response

2. Analysis of High-Order Transfer Functions Behaviors of Second-order Self-loop Function

Second-order self-loop function: $L(\omega) = j\omega [a_0 j\omega + a_1]$

Case	Over-damped		Critically damped		Under-damped	
Delta (Δ)	$\Delta = a_1^2 - 4a_0 > 0$		$\Delta = a_1^2 - 4a_0 = 0$		$\Delta = a_1^2 - 4a_0 < 0$	
$ L(\omega) $	$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$	
θ(ω)	$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$		$\frac{\pi}{2}$ + arctan $\frac{a_0\omega}{a_1}$		$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$	
$\omega_{\rm l} = \frac{a_{\rm l}}{2a_{\rm o}}\sqrt{\sqrt{5}-2}$	$ L(\omega_1) > 1$	$\pi - \theta(\omega_1) > 76.3^{\circ}$	$ L(\omega_1) = 1$	$\pi - \theta(\omega_1) = 76.3^{\circ}$	$ L(\omega_1) < 1$	$\pi - \theta(\omega_1) < 76.3^{\circ}$
$\omega_2 = \frac{a_1}{2a_0}$	$ L(\omega_2) > \sqrt{5}$	$\pi - \theta(\omega_2) > 63.4^{\circ}$	$\left L(\omega_2)\right = \sqrt{5}$	$\pi - \theta(\omega_2) = 63.4^{\circ}$	$\left L(\omega_2)\right < \sqrt{5}$	$\pi - \theta(\omega_2) < 63.4^{\circ}$
$\omega_3 = \frac{a_1}{a_0}$	$ L(\omega_3) > 4\sqrt{2}$	$\pi - \theta(\omega_3) > 45^{\circ}$	$\left L(\omega_3)\right = 4\sqrt{2}$	$\pi - \theta(\omega_3) = 45^\circ$	$\left L(\omega_3)\right < 4\sqrt{2}$	$\pi - \theta(\omega_3) < 45^{\circ}$

2. Analysis of High-Order Transfer Functions Behaviors of Second-order Self-loop Function

Second-order self-loop function: $L(\omega) = j\omega[a_0j\omega + a_1]$

Unity gain of self-loop function

$$\left|L(\omega)\right| = \omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2} = 1$$

Angular frequency at unity gain

$$\omega_1 = \frac{a_1}{2a_0}\sqrt{\sqrt{5}-2}$$

Phase margin at unity gain of self-loop function

•Under-damping: Phase margin = $\pi - \theta(\omega_1) < 76.3^\circ$

•Critical damping: Phase margin = $\pi - \theta(\omega_1) = 76.3^\circ$

• Over-damping: Phase margin = $\pi - \theta(\omega_1) > 76.3^\circ$

2. Analysis of High-Order Transfer Functions Simulations of Second-order Self-loop Function

•Under-damping:
$$L_1(\omega) = (j\omega)^2 + j\omega;$$

- •**Critical damping:** $L_2(\omega) = (j\omega)^2 + 2j\omega;$
- •**Over-damping:** $L_3(\omega) = (j\omega)^2 + 3j\omega;$

Polar chart of self-loop function

Magnitude response

2. Analysis of High-Order Transfer Functions Summary of Second-order System

Magnitude response of transfer function

Transient response

Magnitude-angular response of self-loop function

Over-damping: →Phase margin is 88 degrees.

Critical damping:

→Phase margin is 76.3 degrees.
Under-damping:

 \rightarrow Phase margin is 52 degrees.

2. Analysis of High-Order Transfer Functions Mathematical Model of Ideal Op Amp

Ideal op amp

Open-loop function $A(\omega)$ of op amp

$$A(\omega) = \frac{V_{out}}{V_{in+} - V_{in-}} = \frac{A_0}{1 + \frac{j\omega}{\omega_{bw}}}$$

Gain-bandwidth (GBW), bandwidth fbw

Equivalent model of op amp

 $A(\omega)$

 R_{o}

 V_{out}

V_{in+}

Vin-

Rin

Here, GBW =10 MHz, DC gain Ao = 100000

Open-loop function and self-loop function

$$A(\omega) = \frac{10^5}{1 + j\frac{\omega}{200\pi}}; L(\omega) = j\frac{\omega}{200\pi} = 10^5 \frac{V_{in}}{V_{out}} - 10^5 \frac{V_{in}}$$

2. Analysis of High-Order Transfer Functions Behavior of Open-loop Function of Ideal Op Amp

Open-loop function $A(\omega)$

$$A(\omega) = \frac{10^5}{1 + j\frac{\omega}{200\pi}}$$

Nyquist plot of open-loop function

Bode plots of open-loop function

2. Analysis of High-Order Transfer Functions Behavior of Self-loop Function of Ideal Op Amp

2. Analysis of High-Order Transfer Functions Analysis of Active Inductor

Apply superposition principle at V3

 $V_3\left(\frac{1}{R_2} + \frac{1}{Z_C}\right) = \frac{V_2}{R_2} + \frac{V_4}{Z_C}$ Here, $V_1 = V_3 = V_5$

Approximated value of active inductor

$$Z_{L} = \frac{R_{2}}{R_{1}} \frac{R_{3}}{Z_{C}} Z_{out} = \frac{R_{2}R_{3}}{R_{1}} sCZ_{out}$$

27

2. Analysis of High-Order Transfer Functions Simulations of Passive & Active RLC Low-pass Filters

3. Proposed Designs and Experimental Results Implementation of Second-order Serial RLC LPF

Under-shoot occurred at both input and output ports.

Device under test

3. Proposed Designs and Experimental Results Measured Transfer Function in Serial RLC LPF

3. Proposed Designs and Experimental Results Measured Self-loop Function in Serial RLC LPF

Over-damping: \rightarrow Phase margin is 80 degrees. Nearly Critical damping: \rightarrow Phase margin is 75 degrees. **Under-damping:** \rightarrow Phase margin is 55 degrees.

Magnitude response

3. Proposed Designs and Experimental Results Implementation of Active RLC Low-pass Filter

Over-shoot occurred at output port.

Device under test

3. Proposed Designs and Experimental Results Measured Transfer Function of Active RLC LPF

3. Proposed Designs and Experimental Results Measured Self-loop Function of Active RLC LPF

Over-damping: →Phase margin is 84 degrees. Nearly Critical damping: →Phase margin is 76 degrees. Under-damping: →Phase margin is 65 degrees.

4. Conclusions

This work:

- Reviews of complex functions and stability test
- Proposed methods for derivation of transfer function and measurement of self-loop function
- Implementations and measurements of self-loop functions for passive and active second-order RLC lowpass filters
- Theoretically, if phase margin is smaller than 76.3degrees, overshoot occurs in second-order systems.

Future of work:

• Stability test for polyphase filters & complex filters

References

[1] H. Kobayashi, N. Kushita, M. Tran, K. Asami, H. San, A. Kuwana "Analog - Mixed-Signal - RF Circuits for Complex Signal Processing", IEEE 13th International Conference on ASIC (ASICON 2019) Chongqing, China (Nov, 2019).

[2] M. Tran, C. Huynh, "A Design of RF Front-End for ZigBee Receiver using Low-IF Architecture with Poly-phase Filter for Image Rejection", M.S. thesis, University of Technology Ho Chi Minh City – Vietnam (Dec. 2014).

[3] H. Kobayashi, M. Tran, K. Asami, A. Kuwana, H. San, "Complex Signal Processing in Analog, Mixed - Signal Circuits", Proceedings of International Conference on Technology and Social Science 2019, Kiryu, Japan (May. 2019).

[4] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi "Flat Pass-Band Method with Two RC Band-Stop Filters for 4-Stage Passive RC Quadratic Filter in Low-IF Receiver Systems", IEEE 13th ASICON 2019 Chongqing, China (Nov. 2019).

[5] M. Tran, Y. Sun, N. Oiwa, Y. Kobori, A. Kuwana, H. Kobayashi, "Mathematical Analysis and Design of Parallel RLC Network in Step-down Switching Power Conversion System", Proceedings of International Conference on Technology and Social Science (ICTSS 2019) Kiryu, Japan (May. 2019).

[6] M. Tran, "Damped Oscillation Noise Test for Feedback Circuit Based on Comparison Measurement Technique", 73rd System LSI Joint Seminar, Tokyo Institute of Technology, Tokyo, Japan (Oct. 2019).

[7] R. Middlebrook, "Measurement of Loop Gain in Feedback Systems", Int. J. Electronics, Vol 38, No. 4, pp. 485-512, (1975).

[8] M. Tran, Y. Sun, Y. Kobori, A. Kuwana, H. Kobayashi, "Overshoot Cancelation Based on Balanced Charge-Discharge Time Condition for Buck Converter in Mobile Applications", IEEE 13th ASICON 2019 Chongqing, China (Nov, 2019).

[9] A. Sedra, K. Smith (2010) Microelectronic Circuits 6th ed. Oxford University Press, New York.

[10] R. Schaumann, M. Valkenberg, (2001) Design of Analog Filters, Oxford University Press.

[11] B. Razavi, (2016) Design of Analog CMOS Integrated Circuits, 2nd Edition McGraw-Hill.

[12] M. Tran, N. Miki, Y. Sun, Y. Kobori, H. Kobayashi, "EMI Reduction and Output Ripple Improvement of Switching DC-DC Converters with Linear Swept Frequency Modulation", IEEE 14th International Conference on Solid-State and Integrated Circuit Technology, Qingdao, China (Nov. 2018).

[13] J. Wang, G. Adhikari, N. Tsukiji, M. Hirano, H. Kobayashi, K. Kurihara, A. Nagahama, I. Noda, K. Yoshii, "Equivalence Between Nyquist and Routh-Hurwitz Stability Criteria for Operational Amplifier Design", IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), Xiamen, China (Nov. 2017).

6th International Conference on Signal and Image Processing (SIPRO 2020)

July 25-26, 2020, London, United Kingdom

Thank you very much!

