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1. Research Background
Motivation of Study

Large overshoots + ringing + unwanted voltage transients 
 Damped oscillation noise
 Unstable system

Overshoot

Undershoot

STABILITY TEST

o Ringing occurs in 
both with and without
feedback systems. 

o Ringing affects both input and output signals. 
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o Investigation of operating region of high-order  
systems in both time and frequency domains

 Over-damping   (high delay in rising time)
 Critical damping (max power propagation)
 Under-damping (overshoot and ringing)

1. Research Background
Objectives and Achievements

o Design of active inductor and measurement of 
self-loop function in active serial RLC LPF 

Achievements

Objectives
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1. Research Background
Approaching Methods

Passive RLC Low-pass Filter Active RLC Low-pass Filter

Balun transformer
input

output

Implementation of active RLC LPF
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1. Research Background
Reviews of Complex Functions
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oPolar chart (Nyquist chart)
oMagnitude-frequency, angular-frequency plots (Bode plots)
oMagnitude-angular diagrams (Nicholas diagrams)
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1. Research Background
Transfer Function and Its Self-loop Function
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1. Research Background
Signal Flow Graph for Transfer Function
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To meet the specified requirements
○ High stability 
○ Fast transient response, and 
○ Good steady-state performance.

Negative feedback Network

STABILITY TEST
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1. Research Background
Proposed Comparison Measurement Technique
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Sequence of steps: 
(i) Measurement of open loop function A(ω), 
(ii) Measurement of transfer function H(ω), and
(iii) Derivation of self-loop function.
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1. Research Background
Proposed Alternating Current Conservation (1)
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Idea: Alternating current is conserved.

Incident current = Transmitted current

Incident current

Transmitted current

Self-loop function: 
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1. Research Background
Proposed Alternating Current Conservation (2)

One voltage source 

One current source 
Two splitting 
current sources 

Two splitting 
voltage sources 
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1. Research Background
Proposed Alternating Current Conservation (3)
Alternating current conservation using balun transformer
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Self-loop function: 

Balun transformer
(10 mH inductance)
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1. Research Background
Proposed Widened Superposition Principle
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Widened Superposition Principle:

EA(t) :  Energy at one place
Ei(t) :  Input sources
di(t) : Resistance distances

o Multi-source systems, feedback networks (op amps, 
amplifiers), polyphase filters, complex filters…
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1. Research Background 
Limitations of Conventional Methods (1)

Current injection method Voltage injection method

 Current injection
 Voltage injection

[7] Middlebrook, R.D., "Measurement of Loop Gain in Feedback 
Systems", Int. J. Electronics, vol 38, No. 4, pp. 485-512, 1975.

Measurement of loop gain
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Difficult to measure self-loop function in analog circuits 
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1. Research Background 
Limitations of Conventional Methods (2)

Replica measurementMeasurement of loop gain

[9] A. S. Sedra and K. C. Smith, “Microelectronic Circuits,” 6th ed. 
Oxford University Press, New York, 2010. 
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1. Research Background 
Limitations of Conventional Methods (3)

o Conventional Superposition:
Solving for every source voltage and current, perhaps several times.

o Conventional measurement of loop gain (Middle Brook’s)
Applying only in feedback systems (switching DC-DC converters).

o Conventional replica measurement of loop gain
Using two identical networks (difficult in practical measurement).

oConventional Nyquist’s stability condition
 Using in theoretical analysis for feedback systems (Lab simulation).

o Conventional concepts, analysis and measurement of loop 
gain are not unique.
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2. Analysis of High-Order Transfer Functions
Second-order Parallel RLC Low-pass Filter
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2. Analysis of High-Order Transfer Functions
Behaviors of Second-order Transfer Function

Case Over-damped Critically damped Under-damped
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2. Analysis of High-Order Transfer Functions
Example of Second-order Transfer Function

•Under-damping:

•Critical damping:

•Over-damping:

Magnitude of transfer function
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2. Analysis of High-Order Transfer Functions
Simulations of Second-order Transfer Function
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•Under-damping:

•Critical damping:

•Over-damping:

Phase response

Magnitude response

Polar chart of transfer function

Nyquist chart
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2. Analysis of High-Order Transfer Functions
Behaviors of Second-order Self-loop Function

Case Over-damped Critically damped Under-damped
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2. Analysis of High-Order Transfer Functions
Behaviors of Second-order Self-loop Function

 0 1( )   L j a j aSecond-order self-loop function:

•Under-damping:

•Critical damping:

•Over-damping:

Phase margin at unity gain of self-loop function
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2. Analysis of High-Order Transfer Functions
Simulations of Second-order Self-loop Function
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2. Analysis of High-Order Transfer Functions
Summary of Second-order System

Over-damping:
Phase margin is 88 degrees.
Critical damping:
Phase margin is 76.3 degrees.
Under-damping: 
Phase margin is 52 degrees.

92o

103.7o 128o

Magnitude-angular response of self-loop functionMagnitude response of transfer function

Transient response
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2. Analysis of High-Order Transfer Functions
Mathematical Model of Ideal Op Amp
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2. Analysis of High-Order Transfer Functions
Behavior of Open-loop Function of Ideal Op Amp
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2. Analysis of High-Order Transfer Functions
Behavior of Self-loop Function of Ideal Op Amp
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2. Analysis of High-Order Transfer Functions
Analysis of Active Inductor
General impedance converter
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2. Analysis of High-Order Transfer Functions
Simulations of Passive & Active RLC Low-pass Filters

Passive serial RLC Low-pass Filter

Active serial RLC Low-pass Filter

Magnitude response of transfer function

Magnitude response of transfer function
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3. Proposed Designs and Experimental Results
Implementation of Second-order Serial RLC LPF  

Device under test

Under-shoot occurred at both input and output ports.

input

output
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3. Proposed Designs and Experimental Results
Measured Transfer Function in Serial RLC LPF  

Phase 
response

Magnitude 
response

Transient response
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3. Proposed Designs and Experimental Results
Measured Self-loop Function in Serial RLC LPF  

Over-damping:Phase margin is 80 degrees.
Nearly Critical damping:Phase margin is 75 degrees.
Under-damping: Phase margin is 55 degrees.

55o

75o

80o

Phase responseMagnitude response

Ph
as

e 
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3. Proposed Designs and Experimental Results
Implementation of Active RLC Low-pass Filter  

Device under test

Over-shoot occurred at output port.

input

output
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3. Proposed Designs and Experimental Results
Measured Transfer Function of Active RLC LPF  

Phase 
response

Magnitude 
response

Transient response
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3. Proposed Designs and Experimental Results
Measured Self-loop Function of Active RLC LPF  

Over-damping:Phase margin is 84 degrees.
Nearly Critical damping:Phase margin is 76 degrees.
Under-damping: Phase margin is 65 degrees.

65o

76o
84o

Phase responseMagnitude response



This work:
• Reviews of complex functions and stability test 
• Proposed methods for derivation of transfer function 

and measurement of self-loop function
• Implementations and measurements of self-loop 

functions for passive and active second-order RLC low-
pass filters 

• Theoretically, if phase margin is smaller than 76.3-
degrees, overshoot occurs in second-order systems. 

Future of work:
• Stability test for polyphase filters & complex filters 

4. Conclusions
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