

Study of Behaviors of Electronic Amplifiers using Nichols Chart

PHD. Candidate. MinhTri Tran*,

Prof. Anna Kuwana, Prof. Haruo Kobayashi

Gunma University, Japan

JAPAN Gunma

Outline

1. Research Background

- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Analysis of Behaviors of High-order Systems
- Operating regions of high-order systems
- **3. Ringing Test for Feedback Amplifiers**
- Stability test for shunt-shunt feedback amplifiers
- Stability test for unity-gain and inverting amplifiers
- 4. Ringing Test for High-order Low-Pass Filters
- Stability test for passive and active RLC circuits
- Stability test for Deboo low-pass filters
- 5. Conclusions

1. Research Background

Noise in Electronic Systems

Common types of noise:

 Electronic noise, thermal noise, intermodulation noise, cross-talk, flicker noise, thermal noise...

Ringing does the following things:

- Causes EMI noise,
- Increases current flow,
- Decreases the performance, and
- Damages the devices.

1. Research Background Objectives of Study

- Derivation of self-loop function based on the proposed comparison measurement
- Investigation of operating regions of linear negative feedback networks
- Observation of phase margin at unity gain on the Nichols chart
- → Over-damping (high delay in rising time)
- Critical damping (max power propagation)
- → Under-damping (overshoot and ringing)

1. Research Background

Achievements of Study

Comparison measurement

- Feedback amplifiers
- High-order low-pass filters

Self-loop
function
$$L(\omega) = \frac{A(\omega)}{H(\omega)} - \frac{1}{2}$$

2nd-order Deboo low-pass LPF

Alternating current conservation

Implemented circuit

1. Research Background Self-loop Function in A Transfer Function

Linear system

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

○ Polar chart → Nyquist chart
 ○ Magnitude-frequency plot
 ○ Angular-frequency plot
 ○ Magnitude-angular diagram → Nichols diagram

Model of a linear system

$$H(\boldsymbol{\omega}) = \frac{b_0(j\omega)^n + \dots + b_{n-1}(j\omega) + b_n}{a_0(j\omega)^n + \dots + a_{n-1}(j\omega) + a_n}$$

 $A(\omega)$: Numerator function $H(\omega)$: Transfer function $L(\omega)$: Self-loop function Variable: angular frequency (ω)

1. Research Background

Comparison Measurement

Linear system

Model of a linear system

 $H(\boldsymbol{\omega}) = \frac{b_0 (j\omega)^n + \dots + b_{n-1} (j\omega) + b_n}{a_0 (j\omega)^n + \dots + a_{n-1} (j\omega) + a_n}$

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

Sequence of steps:

- (i) Measurement of numerator function A(ω),
- (ii) Measurement of transfer function H(ω), and

(iii) Derivation of self-loop function.

Self-loop function

1. Research Background Alternating Current Conservation

Transfer function

Simplified linear system

Self-loop function

Derivation of self-loop function

1. Research Background

Characteristics of Adaptive Feedback Network

Adaptive feedback is used to control the output source along with the decision source (DC-DC Buck converter).

Transfer function of an adaptive feedback network is significantly different from transfer function of a linear negative feedback network. → Loop gain is independent of frequency variable (referent voltage, feedback voltage, and error voltage are DC voltages).

1. Research Background Loop Gain in Feedback Systems

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Analysis of Behaviors of High-order Systems
- Operating regions of high-order systems
- **3. Ringing Test for Feedback Amplifiers**
- Stability test for shunt-shunt feedback amplifiers
- Stability test for unity-gain and inverting amplifiers
- 4. Ringing Test for High-order Low-Pass Filters
- Stability test for passive and active RLC circuits
- Stability test for Deboo low-pass filters
- 5. Conclusions

2. Analysis of Behaviors of High-order Systems Characteristics of 2nd-order Transfer Function

Second-order transfer function: $H(\omega)$ =

$$=\frac{1}{1+a_0(j\omega)^2+a_1j\omega}$$

1

Case	Over-damping	Critical damping	Under-damping	
Delta (Δ)	$\frac{1}{a_0} < \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 > 0$	$\frac{1}{a_0} = \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 = 0$	$\frac{1}{a_0} > \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 < 0$	
Module $ H(\omega) $	$\frac{\frac{1}{a_0}}{\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}$	$\frac{\frac{1}{a_0} \frac{1}{\left[\omega^2 + \left(\frac{a_1}{2a_0}\right)^2\right]} = \frac{1}{2} = -6dB$	$\frac{\frac{1}{a_0}}{\sqrt{\left(\omega - \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}\right)^2 + \left(\frac{a_1}{2a_0}\right)^2}\sqrt{\left(\omega + \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}\right)^2 + \left(\frac{a_1}{2a_0}\right)^2}}$	
$\begin{array}{c} \textbf{Angular} \\ \theta(\omega) \end{array}$	$-\arctan\left(\frac{\omega}{\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}}\right) - \arctan\left(\frac{\omega}{\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}}\right)$	$-2 \arctan\left(\frac{2a_0\omega}{a_1}\right)$	$-\arctan\left(\frac{\omega-\sqrt{\frac{1}{a_0}-\left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)-\arctan\left(\frac{\omega+\sqrt{\frac{1}{a_0}-\left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)$	
$\omega_{cut} = \frac{a_1}{2a_0}$	$\left H(\omega_{cut}) < \frac{2a_0}{a_1} \right \Theta(\omega_{cut}) > -\frac{\pi}{2}$	$ H(\omega_{cut}) = \frac{2a_0}{a_1} \theta(\omega_{cut}) = -\frac{\pi}{2}$	$ H(\omega_{cut}) > \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) < -\frac{\pi}{2}$	

2. Analysis of Behaviors of High-order Systems Characteristics of 2nd-order Self-loop Function

Second-order self-loop function: $L(\omega) = j\omega [a_0 j\omega + a_1]$

Case	Over-damping		Critical damping		Under-damping	
Delta (Δ)	$\Delta = a_1^2 - 4a_0 > 0$		$\Delta = a_1^2 - 4a_0 = 0$		$\Delta = a_1^2 - 4a_0 < 0$	
$ L(\omega) $	$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(\frac{a_0}{\omega}\omega\right)^2 + a_1^2}$	
θ(ω)	$\frac{\pi}{2}$ +	$\arctan \frac{a_0 \omega}{a_1}$	$\frac{\pi}{2}$ + arctan $\frac{a_0\omega}{a_1}$		$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$	
$\omega_1 = \frac{a_1}{2a_0}\sqrt{\sqrt{5}-2}$	$\left(\left L(\omega_1)\right > 1\right)$	$\pi - \theta(\omega_1) > 76.3^{\circ}$	$ L(\omega_1) = 1$	$\pi - \theta(\omega_1) = 76.3^{\circ}$	$\left L(\omega_1) \right < 1$	$\pi - \theta(\omega_1) < 76.3^{\circ}$
$\omega_2 = \frac{a_1}{2a_0}$	$\left L(\omega_2)\right > \sqrt{5}$	$\pi - \theta(\omega_2) > 63.4^{\circ}$	$\left L(\omega_2)\right = \sqrt{5}$	$\pi - \theta(\omega_2) = 63.4^{\circ}$	$ L(\omega_2) < \sqrt{5}$	$\pi - \theta(\omega_2) < 63.4^{\circ}$
$\omega_3 = \frac{a_1}{a_0}$	$ L(\omega_3) > 4\sqrt{2}$	$\pi - \theta(\omega_3) > 45^{\circ}$	$\left L(\omega_3)\right = 4\sqrt{2}$	$\pi - \theta(\omega_3) = 45^{\circ}$	$\left L(\omega_3)\right < 4\sqrt{2}$	$\pi - \theta(\omega_3) < 45^{\circ}$

2. Analysis of Behaviors of High-order Systems **Operating Regions of 2nd-Order System**

- •Under-damping: *L*₁(ω) = $(j\omega)^2 + j\omega$; $H_1(\omega) = \frac{1}{(j\omega)^2 + j\omega + 1}$;
- - $L_2(\omega) = (j\omega)^2 + 2j\omega;$
- - $L_3(\omega) = (j\omega)^2 + 3j\omega;$

•Critical damping: $H_2(\omega) = \frac{1}{(j\omega)^2 + 2j\omega + 1}; \quad \bigoplus_{j=1}^{2.5}$ •**Over-damping:** $H_3(\omega) = \frac{1}{(j\omega)^2 + 3j\omega + 1};$

Transient response

Bode plot of transfer function

Nichols plot of self-loop function

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Analysis of Behaviors of High-order Systems
- Operating regions of high-order systems
- **3. Ringing Test for Feedback Amplifiers**
- Stability test for shunt-shunt feedback amplifiers
- Stability test for unity-gain and inverting amplifiers
- 4. Ringing Test for High-order Low-Pass Filters
- Stability test for passive and active RLC circuits
- Stability test for Deboo low-pass filters
- 5. Conclusions

3.Ringing Test for Feedback Amplifiers Analysis of Shunt-Shunt Feedback Amplifier

Apply superposition at the nodes V_{π} and V_{out} , we have

$$V_{\pi}\left(\frac{1}{R_{s}} + \frac{1}{r_{\pi}} + \frac{1}{Z_{C\pi}} + \frac{1}{R_{F}} + \frac{1}{Z_{C\mu}}\right) = \frac{V_{in}}{R_{s}} + \frac{V_{out}}{Z_{C\mu}}; \quad V_{out}\left(\frac{1}{Z_{C\mu}} + \frac{1}{Z_{CCS}} + \frac{1}{R_{c}} + \frac{1}{r_{o}}\right) = V_{\pi}\left(\frac{1}{Z_{C\mu}} + \frac{1}{R_{F}} - g_{m}\right);$$

Transfer function and self-loop function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1}; \quad L(\omega) = j\omega [a_0 j\omega + a_1]$$

Where,
$$b_0 = R_L C_{GD1}; b_1 = -R_L g_{m1}; a_0 = R_S R_L (C_{GD1} C_{GS1} + C_{GD1} C_{DB1} + C_{DB1} C_{GS1});$$

 $a_1 = R_L (C_{GD1} + C_{DB1}) + R_S (C_{GS1} + C_{GD1}) + R_S R_L g_{m1} C_{GD1};$ 15

3.Ringing Test for Feedback Amplifiers Characteristics of Shunt-Shunt Feedback Amplifier

3.Ringing Test for Feedback Amplifiers Analysis of Op Amp without Miller's Capacitor

Open-loop function $A_{op}(\omega) = \frac{b_0 (j\omega)^3 + b_1 (j\omega)^2 + b_2 j\omega + b_3}{a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1};$ Self-loop function $L_{op}(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega;$ Without frequency compensation

3.Ringing Test for Feedback Amplifiers Unity-Gain Amplifier without Miller's Capacitor

Bode plot of transfer function $H(\omega)$ Magnitude of transfer function 15 dB 100 MHz 1 GHz 10 GHz Frequency (Hz) Nichols plot of self-loop function $L(\omega)$ Self-loop function 167° Phase margin = 13 degrees 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 18

Phase (deg)

3.Ringing Test for Feedback Amplifiers Two-stage Op Amp with Frequency Compensation

 $L_{op}(\omega) = a_0 (j\omega)^6 + a_1 (j\omega)^5 + a_2 (j\omega)^4 + a_3 (j\omega)^3 + a_4 (j\omega)^2 + a_5 j\omega;$

Small signal model of 2nd-stage

With Miller's capacitor and resistor

Transfer function

$$H(\omega) = \frac{b_0 (j\omega)^3 + b_1 (j\omega)^2 + b_2 j\omega + b_3}{a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1};$$

Self-loop function

$$L(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega$$

3.Ringing Test for Feedback Amplifiers Unity-Gain Amplifier with Miller's Capacitor

Transfer function and self-loop function

$$H(\omega) = \frac{1}{1 + \frac{1}{A(\omega)}} \approx 1; \quad L(\omega) = \frac{1}{A(\omega)};$$

Simplified model

Under-damping: R1= 2 kΩ, C1 = 1 pF

Critical damping:

R1 = 3.5 kΩ, C1 = 0.2 pF

Over-damping:

R1 = $3.5 \text{ k}\Omega$, C1 = 0.8 pF

3.Ringing Test for Feedback Amplifiers Behaviors of Unity-Gain Amplifier

Simplified model of unity gain amplifier

Bode plot of transfer function

Simulated transient response

Nichols plot of self-loop function

3.Ringing Test for Feedback Amplifiers Inverting Amplifier with Miller's Capacitor

Inverting amplifier

Vdd M6 M4 M3 Cc **⊢** M2 M1 Vb2 vout M7 1 T ₩ M5 Vb1 R2 **R1** Vin

Transfer function and self-loop function

$$H(\omega) = \frac{-\frac{R_2}{R_1}}{1 + L(\omega)} \approx -\frac{R_2}{R_1}; L(\omega) = \frac{1}{A(\omega)} \left(1 + \frac{R_2}{R_1}\right);$$

Simplified model

Under-damping: $Rz = 0 k\Omega, Cz = 0 pF$ Critical damping: $Rz = 0.5 k\Omega, Cz = 0.5 pF$ Over-damping: $Rz = 4 k\Omega, Cz = 0.5 pF$

3. Ringing Test for Feedback Amplifiers Behaviors of Inverting Amplifier

Simplified model of inverting amplifier

Simulated transient response

Nichols plot of self-loop function

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Analysis of Behaviors of High-order Systems
- Operating regions of high-order systems
- **3. Ringing Test for Feedback Amplifiers**
- Stability test for shunt-shunt feedback amplifiers
- Stability test for unity-gain and inverting amplifiers
- 4. Ringing Test for High-order Low-Pass Filters
- Stability test for passive and active RLC circuits
- Stability test for Deboo low-pass filters

5. Conclusions

4. Ringing Test for High-order Low-Pass Filters Analysis of 2nd-Order Passive RLC LPF

Passive RLC Low-pass Filter

Derivation of self-loop function

Transfer function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

Self-loop function

$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;$$

where, $a_0 = LC; a_1 = RC;$

Implemented circuit

4. Ringing Test for High-order Low-Pass Filters Measurement Results for 2nd-Order Passive RLC LPF

Nichols plot of self-loop function

Transient responses

26

4. Ringing Test for High-order Low-Pass Filters Stability Test for 2nd-Order Active Ladder LPF

Active ladder low-pass filter

Transfer function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

Bode plot of transfer function

Implemented circuit

Self-loop function

Nichols plot of self-loop function _____Over-damping ____ Critical damping ____ Under-damping

4. Ringing Test for High-order Low-Pass Filters Analysis of 2nd-Order Deboo low-pass LPF

Single ended Deboo low-pass LPF

Fully differential Deboo low-pass LPF

Transfer function & self-loop function

$$H(\omega) = -\frac{b_0}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$
$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;$$

where

$$b_{0} = \frac{R_{2}R_{4}R_{7}(R_{5} + R_{6})}{R_{1}[R_{2}R_{4}(R_{5} + R_{6}) + R_{7}(R_{4}R_{5} - R_{3}R_{6})]};$$

$$a_{0} = \frac{R_{2}R_{3}R_{4}R_{5}R_{7}C_{1}C_{2}}{R_{2}R_{4}(R_{5} + R_{6}) + R_{7}(R_{4}R_{5} - R_{3}R_{6})};$$

$$a_{1} = \frac{R_{2}R_{7}C_{1}(R_{4}R_{5} - R_{3}R_{6}) + R_{3}R_{4}R_{5}R_{7}C_{2}}{R_{2}R_{4}(R_{5} + R_{6}) + R_{7}(R_{4}R_{5} - R_{3}R_{6})};$$

 $R_1 = R_3 = R_5 = 1 k\Omega$, $R_2 = 10 k\Omega$, $R_6 = R_7 = 5 k\Omega$, $C_1 = 1 nF$, $C_2 = 0.5 nF$ at $f_0 = 10 kHz$.

- Over-damping (R4 = $3 k\Omega$),
- Critical damping (R4 = 6 k Ω), and
- Under-damping (R4 = 10 k Ω). 28

4. Ringing Test for High-order Low-Pass Filters Implemented Circuit of Deboo low-pass LPF

Schematic of Deboo low-pass LPF

System Under Test

Implemented Circuit

Measurement set up

4. Ringing Test for High-order Low-Pass Filters Measurement Results of Deboo low-pass LPF

Transient response

Over-damping:

 \rightarrow Phase margin is 81 degrees.

Critical damping:

 \rightarrow Phase margin is 73 degrees.

Under-damping:

 \rightarrow Phase margin is 62 degrees.

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Analysis of Behaviors of High-order Systems
- Operating regions of high-order systems
- **3. Ringing Test for Feedback Amplifiers**
- Stability test for shunt-shunt feedback amplifiers
- Stability test for unity-gain and inverting amplifiers
- 4. Ringing Test for High-order Low-Pass Filters
- Stability test for passive and active RLC circuits
- Stability test for Deboo low-pass filters

5. Conclusions

5. Limitations of Conventional Methods

- Middlebrook's measurement of loop gain
- →Applying only in feedback systems (DC-DC converters).
- **o Replica measurement of loop gain**
- →Using two identical networks (not real measurement).
- Nyquist's stability condition
- \rightarrow Theoretical analysis for feedback systems (Lab tool).
- \odot Nichols chart of loop gain
- \rightarrow Only used in feedback control theory (Lab tool).

5. Comparison

Features	Comparison measurement	Alternating current conservation	Replica measurement	Middlebrook's method
Main objective	Self-loop function	Self-loop function	Loop gain	Loop gain
Transfer function accuracy	Yes	Yes	Νο	Νο
Breaking feedback loop	Νο	Yes	Yes	Yes
Operating region accuracy	Yes	Yes	Νο	Νο
Phase margin accuracy	Yes	Yes	No	No
Passive networks	Yes	Yes	Νο	Νο

5. Discussions

- Loop gain is independent of frequency variable.
- →Loop gain in adaptive feedback network is significantly different from self-loop function in linear negative feedback network.

Nichols chart is only used in MATLAB simulation.

Nichols Chart 30 0.25 dB 0.5 dB Open-Loop Gain (dB) 0 01 05 1.dB 3 dB -3 dB 6 dB -6 dB -12 dB -10 -20 dB -20 180 270 630 720 450 Open-Loop Phase (deg)

https://www.mathworks.com/help/control/ref/nichols.html

Nichols chart isn't used widely in practical measurements (only used in control theory).

5. Conclusions

This work:

- Proposal of comparison measurement for deriving self-loop function in a transfer function
 - → Observation of self-loop function can help us optimize the behavior of a high-order system.
- Implementation of circuit and measurements of selfloop functions for high-order feedback amplifiers.
 →Theoretical concepts of stability test are verified by laboratory simulations and practical experiments.

Future of work:

 Stability test for parasitic components in transmission lines, printed circuit boards, physical layout layers

References

- [1] L. Fan, Z. Miao, "Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or *Eigenvalue Analysis*", IEEE Trans. on Power Systems, vol. 35, no. 4, July 2020.
- [2] M. Liu, I. Dassios, G. Tzounas, F. Milano, *"Stability Analysis of Power Systems with Inclusion of Realistic-Modeling of WAMS Delays"*, IEEE Trans. on Power Sys., vol.34, no.1, pp. 627-636, 2019.
- [3] S. Zhong, Y. Huang, "*Comparison of the Phase Margins of Different ADRC Designs,*" IEEE Chinese Control Conf., China, July 2019.
- [4] H. Abdollahi, A. Khodamoradi, E. Santi, P. Mattavelli, "*Online Bus Impedance Estimation and Stabilization of DC Power Distribution Systems: A Method Based on Source Converter Loop-Gain Measurement*", IEEE Applied Power Electronics Conference and Exposition, LA, USA, June 2020.
- [5] L. Fan, Z. Miao, "Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or Eigenvalue Analysis?," IEEE Trans. on Power Systems, vol. 35, no. 4, pp. 3312 – 3315, July 2020.
- [6] Y. Ren, X. Wang, L. Chen, Y. Min, G. Li, L. Wang, Y. Zhang, "A Strictly Sufficient Stability Criterion for Grid-Connected Converters Based on Impedance Models and Gershgorin's Theorem," IEEE Trans. on Power Delivery, vol. 35, no. 3, pp. 1606 – 1609, June 2020.
- [7] V. Salis, A. Costabeber, S. Cox, F. Tardelli, P. Zanchetta, "Experimental Validation of Harmonic Impedance Measurement and LTP Nyquist Criterion for Stability Analysis in Power Converter Networks," IEEE Trans. on Power Electronics, vol. 34, no. 8, pp. 7972 – 7982, Aug. 2019.
- [8] S. Wang, B. Li, Z. Xu, X. Zhao, D. Xu, "A Precise Stability Criterion for Power Hardware-in-the-Loop Simulation System," 10th Int. Conf. on Power Electronics and ECCE Asia, Busan, Korea, May 2019.
- [9] S. Plesnick, J. Berardino, R. Irwin, *"The Generalized Nyquist Criterion Applied to Complex DC Power System Networks,"* IEEE Electric Ship Technologies Symposium, DC, USA, Aug. 2019.

References

- [10] J. Ardila, E. Roa, "A Novel Loop Gain Adaptation Method for Digital CDRs Based on the Cross-Correlation Function," IEEE Int. Symp. on Circuits and Systems, Sapporo, Japan, May 2019.
- [11] A. Ochoa, D. Patterson, M. McGuckin, "*Driving Point Loop Gain and Return Ratio*," IEEE 62nd Int. Midwest Symposium on Circuits and Systems, TX, USA, Aug. 2019.
- [12] M. Tran, A. Kuwana, H. Kobayashi, "Derivation of Loop Gain and Stability Test for Low Pass Tow-Thomas Biquad Filter", 10th Int. Conf. on Computer Science, Engineering and Applications, London, UK, July 2020.
- [13] M. Tran, A. Kuwana, H. Kobayashi, "*Ringing Test for Third-Order Ladder Low-Pass Filters*", 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference, USA, 2020.
- [14] N. Sayyaf, M. Tavazoei, "Frequency Data-Based Procedure to Adjust Gain and Phase Margins and Guarantee the Uniqueness of Crossover Frequencies," IEEE Trans. on Industrial Electronics, vol. 67, no. 3, pp. 2176 – 2185, March 2020.
- [15] M. Tran, A. Kuwana, H. Kobayashi, "Derivation of Loop Gain and Stability Test for Multiple Feedback Low Pass Filter Using Deboo Integrator", The 8th IIAE Int. Conf. on Industrial Application Engineering, Shimane Japan, March, 2020.
- [16] M. Liu, I. Dassios, F. Milano "On the Stability Analysis of Systems of Neutral Delay Differential Equations", Circuits, Systems, and Signal Processing, vol. 38, no. 4, pp. 1639-1653, 2019.
- [17] M. Tran, A. Kuwana, H. Kobayashi, "Design of Active Inductor and Stability Test for Ladder RLC Low Pass Filter Based on Widened Superposition and Voltage Injection", The 8th IIAE Int. Conf. on Industrial Application Engineering, Shimane Japan, March 2020.

Thank you very much! 谢谢

