Study of Behaviors of Electronic Amplifiers using Nichols Chart

PHD. Candidate. MinhTri Tran*,
Prof. Anna Kuwana, Prof. Haruo Kobayashi

Gunma University, Japan
Outline

1. Research Background
 • Motivation, objectives and achievements
 • Self-loop function in a transfer function

2. Analysis of Behaviors of High-order Systems
 • Operating regions of high-order systems

3. Ringing Test for Feedback Amplifiers
 • Stability test for shunt-shunt feedback amplifiers
 • Stability test for unity-gain and inverting amplifiers

4. Ringing Test for High-order Low-Pass Filters
 • Stability test for passive and active RLC circuits
 • Stability test for Deboo low-pass filters

5. Conclusions
1. Research Background

Noise in Electronic Systems

- **Ringing** does the following things:
 - Causes EMI noise,
 - Increases current flow,
 - Decreases the performance, and
 - Damages the devices.

Performance of a system

| Signal to Noise Ratio: | SNR = Signal power \[\frac{\text{Signal power}}{\text{Noise power}} \] |

Performance of a device

| Figure of Merit: | \[F = \frac{\text{Output SNR}}{\text{Input SNR}} \] |

Common types of noise:

- Electronic noise, thermal noise, intermodulation noise, cross-talk, flicker noise, thermal noise...

STABILITY TEST

Unstable system

- **STABILITY TEST**
1. Research Background

Objectives of Study

- **Derivation of self-loop function** based on the proposed comparison measurement
- **Investigation of operating regions** of linear negative feedback networks
- **Observation of phase margin** at unity gain on the Nichols chart
 - **Over-damping** (high delay in rising time)
 - **Critical damping** (max power propagation)
 - **Under-damping** (overshoot and ringing)
1. Research Background
Achievements of Study

Comparison measurement
- Feedback amplifiers
- High-order low-pass filters

Self-loop function

\[L(\omega) = \frac{A(\omega)}{H(\omega)} - 1 \]

Alternating current conservation

Incident current
- Balun transformer

Transmitted current
- AC source

2nd-order Deboo low-pass LPF

Implementing circuit

![Implemented circuit diagram](image)
1. Research Background

Self-loop Function in A Transfer Function

Linear system

Input: $V_{in}(\omega)$
Output: $V_{out}(\omega)$

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

- **Model of a linear system**

$$H(\omega) = \frac{b_0(j\omega)^n + \ldots + b_{n-1}(j\omega) + b_n}{a_0(j\omega)^n + \ldots + a_{n-1}(j\omega) + a_n}$$

Transfer function $H(\omega)$, **Numerator function** $A(\omega)$, **Self-loop function** $L(\omega)$

- **Polar chart** \rightarrow **Nyquist chart**
- **Magnitude-frequency plot**
- **Angular-frequency plot**
- **Magnitude-angular diagram \rightarrow Nichols diagram**

Variable: angular frequency (ω)

Bode plots
1. Research Background

Comparison Measurement

Sequence of steps:
(i) Measurement of numerator function $A(\omega)$,
(ii) Measurement of transfer function $H(\omega)$, and
(iii) Derivation of self-loop function.

Model of a linear system

$H(\omega) = \frac{b_0 (j\omega)^n + \ldots + b_{n-1} (j\omega) + b_n}{a_0 (j\omega)^n + \ldots + a_{n-1} (j\omega) + a_n}$

Linear system

Input $V_{\text{in}}(\omega)$ \[\rightarrow \] Output $V_{\text{out}}(\omega)$

Transfer function

$H(\omega) = \frac{V_{\text{out}}(\omega)}{V_{\text{in}}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$

Self-loop function

$L(\omega) = \frac{A(\omega)}{H(\omega) - 1}$
1. Research Background

Alternating Current Conservation

Transfer function

\[H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{1}{1 + \frac{Z_{in}}{Z_{out}}} \]

\[\Rightarrow L(\omega) = \frac{Z_{in}}{Z_{out}} \]

Self-loop function

\[\frac{V_{inc}}{Z_{in}} = -\frac{V_{trans}}{Z_{out}} \Rightarrow L(\omega) = -\frac{V_{inc}}{V_{trans}} = \frac{Z_{in}}{Z_{out}} \]

Simplified linear system

Derivation of self-loop function

10 mH inductance

Incident current

Transmitted current

AC source
1. Research Background

Characteristics of Adaptive Feedback Network

Block diagram of a typical adaptive feedback system

Adaptive feedback is used to control the output source along with the decision source (DC-DC Buck converter).

Transfer function of an adaptive feedback network is significantly different from transfer function of a linear negative feedback network.

→ Loop gain is independent of frequency variable (referent voltage, feedback voltage, and error voltage are DC voltages).
1. Research Background

Loop Gain in Feedback Systems

Adaptive feedback systems

Input +_ G F Output

Transfer function

GF : loop gain

$H = \frac{G}{1 + GF} \approx 1$

Inverting amplifier

Vin +_ A Vout

Transfer function

$H = \frac{A}{1 + A\beta} \approx \frac{1}{\beta}$

Nichols plot of loop gain

Gain reduction

BW = 100 Hz

GBW = 10 MHz
1. Research Background
 • Motivation, objectives and achievements
 • Self-loop function in a transfer function

2. Analysis of Behaviors of High-order Systems
 • Operating regions of high-order systems

3. Ringing Test for Feedback Amplifiers
 • Stability test for shunt-shunt feedback amplifiers
 • Stability test for unity-gain and inverting amplifiers

4. Ringing Test for High-order Low-Pass Filters
 • Stability test for passive and active RLC circuits
 • Stability test for Deboo low-pass filters

5. Conclusions
2. Analysis of Behaviors of High-order Systems
Characteristics of 2nd-order Transfer Function

Second-order transfer function: \[H(\omega) = \frac{1}{1 + a_0(j\omega)^2 + a_1j\omega} \]

<table>
<thead>
<tr>
<th>Case</th>
<th>Over-damping</th>
<th>Critical damping</th>
<th>Under-damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta ((\Delta))</td>
<td>(1 , a_0 < \left(\frac{a_1}{2a_0}\right)^2 \Rightarrow \Delta = a_1^2 - 4a_0 > 0)</td>
<td>(1 , a_0 = \left(\frac{a_1}{2a_0}\right)^2 \Rightarrow \Delta = a_1^2 - 4a_0 = 0)</td>
<td>(1 , a_0 > \left(\frac{a_1}{2a_0}\right)^2 \Rightarrow \Delta = a_1^2 - 4a_0 < 0)</td>
</tr>
<tr>
<td>Module (</td>
<td>H(\omega)</td>
<td>)</td>
<td>[1 , \frac{1}{a_0} \sqrt{\omega^2 + \left(\frac{a_1}{2a_0}\right)^2 - \omega^2 + \left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}]</td>
</tr>
<tr>
<td>Angular (\theta(\omega))</td>
<td>(-\arctan\left(\frac{\omega}{\frac{a_1}{2a_0}}\right) - \arctan\left(\frac{\omega}{\frac{a_1}{2a_0}}\right)) (-\arctan\left(\frac{\omega}{\frac{a_1}{2a_0}}\right))</td>
<td>(-2 \arctan\left(\frac{2a_0 \omega}{a_1}\right))</td>
<td>(-\arctan\left(\frac{a_1}{2a_0}\right) - \arctan\left(\frac{\omega}{\omega + \frac{a_1}{2a_0}}\right))</td>
</tr>
<tr>
<td>(\omega_{cut} = \frac{a_1}{2a_0})</td>
<td>(</td>
<td>H(\omega_{cut})</td>
<td>< \frac{2a_0}{a_1}) (\theta(\omega_{cut}) > -\frac{\pi}{2})</td>
</tr>
</tbody>
</table>
2. Analysis of Behaviors of High-order Systems

Characteristics of 2nd-order Self-loop Function

Second-order self-loop function:

\[L(\omega) = j\omega \left[a_0 j\omega + a_1 \right] \]

<table>
<thead>
<tr>
<th>Case</th>
<th>Over-damping</th>
<th>Critical damping</th>
<th>Under-damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta ((\Delta))</td>
<td>(\Delta = a_1^2 - 4a_0 > 0)</td>
<td>(\Delta = a_1^2 - 4a_0 = 0)</td>
<td>(\Delta = a_1^2 - 4a_0 < 0)</td>
</tr>
<tr>
<td>(</td>
<td>L(\omega)</td>
<td>)</td>
<td>(\omega \sqrt{(a_0\omega)^2 + a_1^2})</td>
</tr>
<tr>
<td>(\theta(\omega))</td>
<td>(\frac{\pi}{2} + \arctan \frac{a_0\omega}{a_1})</td>
<td>(\frac{\pi}{2} + \arctan \frac{a_0\omega}{a_1})</td>
<td>(\frac{\pi}{2} + \arctan \frac{a_0\omega}{a_1})</td>
</tr>
<tr>
<td>(\omega_1 = \frac{a_1}{2a_0} \sqrt{5} - 2)</td>
<td>(</td>
<td>L(\omega_1)</td>
<td>> 1)</td>
</tr>
<tr>
<td>(\omega_2 = \frac{a_1}{2a_0})</td>
<td>(</td>
<td>L(\omega_2)</td>
<td>> \sqrt{5})</td>
</tr>
<tr>
<td>(\omega_3 = \frac{a_1}{a_0})</td>
<td>(</td>
<td>L(\omega_3)</td>
<td>> 4\sqrt{2})</td>
</tr>
</tbody>
</table>
2. Analysis of Behaviors of High-order Systems

Operating Regions of 2nd-Order System

\begin{itemize}
 \item \textbf{Under-damping:} \\
 \(L_1(\omega) = (j\omega)^2 + j\omega;\) \\
 \(H_1(\omega) = \frac{1}{(j\omega)^2 + j\omega + 1};\)
 \item \textbf{Critical damping:} \\
 \(L_2(\omega) = (j\omega)^2 + 2j\omega;\) \\
 \(H_2(\omega) = \frac{1}{(j\omega)^2 + 2j\omega + 1};\)
 \item \textbf{Over-damping:} \\
 \(L_3(\omega) = (j\omega)^2 + 3j\omega;\) \\
 \(H_3(\omega) = \frac{1}{(j\omega)^2 + 3j\omega + 1};\)
\end{itemize}

\textbf{Bode plot of transfer function}

\textbf{Nichols plot of self-loop function}

\textbf{Transient response}
Outline

1. Research Background
 - Motivation, objectives and achievements
 - Self-loop function in a transfer function

2. Analysis of Behaviors of High-order Systems
 - Operating regions of high-order systems

3. Ringing Test for Feedback Amplifiers
 - Stability test for shunt-shunt feedback amplifiers
 - Stability test for unity-gain and inverting amplifiers

4. Ringing Test for High-order Low-Pass Filters
 - Stability test for passive and active RLC circuits
 - Stability test for Deboo low-pass filters

5. Conclusions
3. Ringing Test for Feedback Amplifiers

Analysis of Shunt-Shunt Feedback Amplifier

BJT shunt-shunt feedback amplifier

Small signal model

Apply superposition at the nodes V_π and V_{out}, we have

$$V_\pi \left(\frac{1}{R_s} + \frac{1}{r_\pi} + \frac{1}{Z_{C\pi}} + \frac{1}{R_F} + \frac{1}{Z_{C\mu}} \right) = \frac{V_{in}}{R_s} + \frac{V_{out}}{Z_{C\mu}}; \quad V_{out} \left(\frac{1}{Z_{C\mu}} + \frac{1}{Z_{CCS}} + \frac{1}{R_C} + \frac{1}{r_o} \right) = V_\pi \left(\frac{1}{Z_{C\mu}} + \frac{1}{R_F} - g_m \right);$$

Transfer function and self-loop function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1}; \quad L(\omega) = j\omega \left[a_0 j\omega + a_1 \right]$$

Where, $b_0 = R_L C_{GD1}; b_1 = -R_L g_{m1}; a_0 = R_S R_L \left(C_{GD1} C_{GS1} + C_{GD1} C_{DB1} + C_{DB1} C_{GS1} \right); \quad a_1 = R_L \left(C_{GD1} + C_{DB1} \right) + R_S \left(C_{GS1} + C_{GD1} \right) + R_S R_L g_{m1} C_{GD1};$
3. Ringing Test for Feedback Amplifiers

Characteristics of Shunt-Shunt Feedback Amplifier

BJT shunt-shunt feedback amplifier

\[R_f = 1 \, \text{k}\Omega, \, R_C = 10 \, \text{k}\Omega, \, R_S = 950 \, \Omega. \]

Transient response

Bode plot of transfer function

- 17 dB

Nichols plot of self-loop function

- 94°
- 86 degrees
3. Ringing Test for Feedback Amplifiers

Analysis of Op Amp without Miller’s Capacitor

Open-loop function

\[
A_{op}(\omega) = \frac{b_0 (j\omega)^3 + b_1 (j\omega)^2 + b_2 j\omega + b_3}{a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1};
\]

Self-loop function

\[
L_{op}(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega;
\]

Without frequency compensation

Small signal model of 2nd-stage

Transfer function

\[
H(\omega) = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1};
\]

Self-loop function

\[
L(\omega) = a_0 (j\omega)^2 + a_1 j\omega
\]

Where, \(a_0 = R_D C_{GD}; a_1 = -R_D g_m; \)

\[
b_0 = R_D R_S \left[(C_{GD} + C_{DB}) (C_{GS} + C_{GD}) - C_{GD}^2 \right];
\]

\[
b_1 = \left[R_D (C_{GD} + C_{DB}) + R_S (C_{GS} + C_{GD}) + R_D R_S g_m C_{GD} \right];
\]
3. Ringing Test for Feedback Amplifiers
Unity-Gain Amplifier without Miller’s Capacitor

Unity-Gain Amplifier

Bode plot of transfer function $H(\omega)$

Nichols plot of self-loop function $L(\omega)$

Transient response
3. Ringing Test for Feedback Amplifiers
Two-stage Op Amp with Frequency Compensation

Open-loop function

\[
A_{op}(\omega) = \frac{b_0 (j\omega)^5 + b_1 (j\omega)^4 + b_2 (j\omega)^3 + b_3 (j\omega)^2 + b_4 j\omega + b_5}{a_0 (j\omega)^6 + a_1 (j\omega)^5 + a_2 (j\omega)^4 + a_3 (j\omega)^3 + a_4 (j\omega)^2 + a_5 j\omega + 1};
\]

Self-loop function

\[
L_{op}(\omega) = a_0 (j\omega)^6 + a_1 (j\omega)^5 + a_2 (j\omega)^4 + a_3 (j\omega)^3 + a_4 (j\omega)^2 + a_5 j\omega;
\]

With Miller’s capacitor and resistor

Transfer function

\[
H(\omega) = \frac{b_0 (j\omega)^3 + b_1 (j\omega)^2 + b_2 j\omega + b_3}{a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1};
\]

Self-loop function

\[
L(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega
\]
3. Ringing Test for Feedback Amplifiers

Unity-Gain Amplifier with Miller’s Capacitor

Unity-gain amplifier with Miller’s capacitor

Simplified model

Transfer function and self-loop function

\[H(\omega) = \frac{1}{1 + \frac{1}{A(\omega)}} \approx 1; \quad L(\omega) = \frac{1}{A(\omega)} \]

Under-damping:
R1 = 2 kΩ, C1 = 1 pF

Critical damping:
R1 = 3.5 kΩ, C1 = 0.2 pF

Over-damping:
R1 = 3.5 kΩ, C1 = 0.8 pF
3. Ringing Test for Feedback Amplifiers

Behaviors of Unity-Gain Amplifier

Simplified model of unity gain amplifier

Simulated transient response

Bode plot of transfer function

Nichols plot of self-loop function
3. Ringing Test for Feedback Amplifiers

Inverting Amplifier with Miller’s Capacitor

Transfer function and self-loop function

\[
H(\omega) = \frac{-R_2}{1 + L(\omega)} \approx -\frac{R_2}{R_1} ;
L(\omega) = \frac{1}{A(\omega)} \left(1 + \frac{R_2}{R_1}\right) ;
\]

- **Under-damping:**
 \(R_z = 0 \, \text{k}\Omega, \, C_z = 0 \, \text{pF}\)

- **Critical damping:**
 \(R_z = 0.5 \, \text{k}\Omega, \, C_z = 0.5 \, \text{pF}\)

- **Over-damping:**
 \(R_z = 4 \, \text{k}\Omega, \, C_z = 0.5 \, \text{pF}\)
3. Ringing Test for Feedback Amplifiers

Behaviors of Inverting Amplifier

Simplified model of inverting amplifier

Simulated transient response

Bode plot of transfer function

Nichols plot of self-loop function
Outline

1. Research Background
 • Motivation, objectives and achievements
 • Self-loop function in a transfer function

2. Analysis of Behaviors of High-order Systems
 • Operating regions of high-order systems

3. Ringing Test for Feedback Amplifiers
 • Stability test for shunt-shunt feedback amplifiers
 • Stability test for unity-gain and inverting amplifiers

4. Ringing Test for High-order Low-Pass Filters
 • Stability test for passive and active RLC circuits
 • Stability test for Deboo low-pass filters

5. Conclusions
4. Ringing Test for High-order Low-Pass Filters

Analysis of 2nd-Order Passive RLC LPF

Passive RLC Low-pass Filter

\[H(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{a_0 (j\omega)^2 + a_1 j\omega + 1}; \]

Self-loop function

\[L(\omega) = a_0 (j\omega)^2 + a_1 j\omega; \]

where, \(a_0 = LC; a_1 = RC;\)

Implemented circuit
4. Ringing Test for High-order Low-Pass Filters

Measurement Results for 2nd-Order Passive RLC LPF

Bode plot of transfer function

![Bode plot]

Nichols plot of self-loop function

![Nichols plot]

Transient responses

![Transient responses]
4. Ringing Test for High-order Low-Pass Filters

Stability Test for 2nd-Order Active Ladder LPF

Active ladder low-pass filter

\[
\begin{align*}
H(\omega) &= \frac{V_{out}}{V_{in}} = \frac{1}{a_0(j\omega)^2 + a_1j\omega + 1};
\end{align*}
\]

Bode plot of transfer function

Self-loop function

\[
L(\omega) = a_0(j\omega)^2 + a_1j\omega;
\]

Nichols plot of self-loop function

implemented circuit
4. Ringing Test for High-order Low-Pass Filters
Analysis of 2nd-Order Deboo low-pass LPF

Single ended Deboo low-pass LPF

![Single ended Deboo low-pass LPF schematic](image)

Transfer function & self-loop function

\[
H(\omega) = -\frac{b_0}{a_0 (j\omega)^2 + a_1 j\omega + 1};
\]

\[
L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;
\]

where,

\[
b_0 = \frac{R_2 R_4 R_7 (R_5 + R_6)}{R_1 \left[R_2 R_4 (R_5 + R_6) + R_7 \left(R_4 R_5 - R_3 R_6 \right) \right]};
\]

\[
a_0 = \frac{R_2 R_3 R_4 R_5 R_7 C_1 C_2}{R_2 R_4 (R_5 + R_6) + R_7 \left(R_4 R_5 - R_3 R_6 \right)};
\]

\[
a_1 = \frac{R_2 R_7 C_1 \left(R_4 R_5 - R_3 R_6 \right) + R_3 R_4 R_5 R_7 C_2}{R_2 R_4 (R_5 + R_6) + R_7 \left(R_4 R_5 - R_3 R_6 \right)};
\]

\[
R_1 = R_3 = R_5 = 1 \text{ k\Omega}, \ R_2 = 10 \text{ k\Omega}, \ R_6 = R_7 = 5 \text{ k\Omega}, \ C_1 = 1 \text{ nF}, \ C_2 = 0.5 \text{ nF} \text{ at } f_0 = 10 \text{ kHz}.
\]

- **Over-damping** (R4 = 3 k\Omega),
- **Critical damping** (R4 = 6 k\Omega), and
- **Under-damping** (R4 = 10 k\Omega).
4. Ringing Test for High-order Low-Pass Filters

Implemented Circuit of Deboo low-pass LPF

Schematic of Deboo low-pass LPF

Implemented Circuit

System Under Test

Measurement set up
4. Ringing Test for High-order Low-Pass Filters

Measurement Results of Deboo low-pass LPF

Bode plot of transfer function

- **Over-damping:**
 - Frequency (Hz)
 - Magnitude (dB)
 - 7 dB
 - 0 dB
 - -7 dB

- **Critical damping:**
 - Frequency (Hz)
 - Magnitude (dB)
 - 81°

- **Under-damping:**
 - Frequency (Hz)
 - Magnitude (dB)
 - 62°

Nichols plot of self-loop function

- **Over-damping:**
 - Phase (deg)
 - 99°

- **Critical damping:**
 - Phase (deg)
 - 107°

- **Under-damping:**
 - Phase (deg)
 - 118°

Transient response

- **Over-damping:**
 - Time (s)
 - Amplitude (V)
 - Phase margin is 81 degrees.

- **Critical damping:**
 - Time (s)
 - Amplitude (V)
 - Phase margin is 73 degrees.

- **Under-damping:**
 - Time (s)
 - Amplitude (V)
 - Phase margin is 62 degrees.
1. Research Background
 • Motivation, objectives and achievements
 • Self-loop function in a transfer function

2. Analysis of Behaviors of High-order Systems
 • Operating regions of high-order systems

3. Ringing Test for Feedback Amplifiers
 • Stability test for shunt-shunt feedback amplifiers
 • Stability test for unity-gain and inverting amplifiers

4. Ringing Test for High-order Low-Pass Filters
 • Stability test for passive and active RLC circuits
 • Stability test for Deboo low-pass filters

5. Conclusions
5. Limitations of Conventional Methods

- **Middlebrook’s measurement of loop gain**
 - Applying only in feedback systems (DC-DC converters).

- **Replica measurement of loop gain**
 - Using two identical networks (not real measurement).

- **Nyquist’s stability condition**
 - Theoretical analysis for feedback systems (Lab tool).

- **Nichols chart of loop gain**
 - Only used in feedback control theory (Lab tool).
5. Comparison

<table>
<thead>
<tr>
<th>Features</th>
<th>Comparison measurement</th>
<th>Alternating current conservation</th>
<th>Replica measurement</th>
<th>Middlebrook’s method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main objective</td>
<td>Self-loop function</td>
<td>Self-loop function</td>
<td>Loop gain</td>
<td>Loop gain</td>
</tr>
<tr>
<td>Transfer function accuracy</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Breaking feedback loop</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Operating region accuracy</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Phase margin accuracy</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Passive networks</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
5. Discussions

- Loop gain is independent of frequency variable.

→ Loop gain in adaptive feedback network is significantly different from self-loop function in linear negative feedback network.

Nichols chart is only used in MATLAB simulation.

Nichols chart isn’t used widely in practical measurements (only used in control theory).

https://www.mathworks.com/help/control/ref/nichols.html
5. Conclusions

This work:

- **Proposal of comparison measurement** for deriving **self-loop function** in a transfer function
 - **Observation** of self-loop function can help us optimize the behavior of a high-order system.
- **Implementation of circuit and measurements** of self-loop functions for high-order feedback amplifiers.
 - **Theoretical concepts** of stability test are verified by laboratory simulations and practical experiments.

Future of work:

- **Stability test** for **parasitic components** in transmission lines, printed circuit boards, physical layout layers
References

References

Thank you very much!
谢谢
Q&A