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1. Research Background
Motivation of Study

Common types of noise:
• Electronic noise
• Thermal noise,
• Intermodulation noise,
• Cross-talk,
• Impulse noise,
• Shot noise, and
• Transit-time noise.

System noise:
• Image noise,
• Ripple noise,
• Ringing noise.

Device noise:
• Flicker noise,
• Thermal noise,
• White noise.

Signal to 
Noise Ratio:

Performance of a devicePerformance of a system

Figure of 
Merit:


Signal power

SNR
Noise power


Output SNR
Input SNR

F
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• Derivation of transfer function in electronic 
systems using superposition theorem

• High image rejection ratio and flat pass-band 
gain for polyphase filters and complex filters

• Low ringing and small ripple for DC-DC Buck 
converters using linear swept frequency 
modulation and LC notch harmonic filter 
methods

• Stability test for electronic networks with and 
without feedback loops

1. Research Background
Objectives of Study
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1. Research Background
Achievements of Study

Superposition formula for multi-source networks

Alternating current conservation for stability test of linear networks
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1. Research Background 
Limitations of Conventional Methods

o Conventional Superposition
Solving for every source (several times).

o Conventional Middlebrook’s measurement
Applying only in feedback systems (DC-DC converters).

o Conventional replica measurement of loop gain
Using two identical networks (not real measurement).

o Conventional Nyquist’s stability condition
 Theoretical analysis for feedback systems (Lab tool)
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2. Investigation of Multi-Phase Networks
Superposition Theorem for Multi-Source Systems
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Superposition formula:

VO(t) :  Voltage at one node
Vi(t) :  Input voltage sources
Iai(t) :  Ahead-toward current sources
Igi(t) :  Ground-toward current sources
Zi, si, pi,(t): Impedances at each branch

o Multi-source systems, feedback 
networks (op amps, amplifiers), 
polyphase filters, complex filters…

A general 
multi-source 
network
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2. Investigation of Multi-Phase Networks
Analysis of 2nd–Order Polyphase Filter

Transfer function for positive polyphase signalSecond-order RC polyphase filter
Va Vout
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Apply superposition at each node

Transfer function for negative polyphase signal

Here:

Image rejection ratio (IRR)



8

2. Investigation of Multi-Phase Networks
Behaviors of 2nd–Order Polyphase Filter

Transfer function in all frequency domain 2-order RC polyphase filter
Va Vout
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Here, R1 = 1 kΩ, C1 = 227 pF, R2 = 1 kΩ, 
C2 = 114 pF, at f1 = 700 kHz, f2 = 1.4 MHz,

Bode plot of transfer function in all frequency domain 



9

2. Investigation of Multi-Phase Networks
Behavior of 4th–Order Polyphase Filter
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Transfer function

Transient 
response

Fourth-order RC polyphase filter

Bode plot of transfer function

Implemented circuit
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2. Investigation of Multi-Phase Networks
Flat Pass-Band Gain for 4th–Order Polyphase Filter

from 2dB
 0.47dB

Proposed Design
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2. Investigation of Multi-Phase Networks
Behavior of 6th-order Quadrature Signal Generation
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2. Investigation of Multi-Phase Networks
Behavior of 4th-order Complex Filter
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3. Noise Reduction for DC-DC Converters
Characteristics of Adaptive Feedback Network
Block diagram of a typical adaptive feedback system

Reference 
voltage

Adaptive feedback is used to control the output source 
along with the decision source (DC-DC Buck converter). 

The transfer function of an adaptive feedback network is 
significantly different from the transfer function of a 
linear negative feedback network.

DC voltage

DC voltage

DC voltage

DC voltage
+ Ripple voltage
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3. Noise Reduction for DC-DC Converters
Review of Step-down DC-DC Buck Converter 
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3. Noise Reduction for DC-DC Converters
Ripple Reduction using Linear Swept Frequency Modulation
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Modulation
Signal
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Modulate

Linear swept frequency modulation

Block diagram of DC-DC Buck converter Without
frequency 
modulation

With
frequency 
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Without
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With
frequency 
modulation
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3. Noise Reduction for DC-DC Converters
Ripple Reduction using LC Notch Harmonic Filter

PWM 
CONTROL 

BLOCK

Schematic diagram of DC-DC Buck converter Implemented circuit

Without
notch 
filter

With
notch 
filter

Output 
spectrum

Output 
spectrum

Ripple Reduction Ripple Reduction 
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4. Stability Test for Electronic Systems
Damped Oscillation Noise

Large overshoots + ringing + unwanted voltage transients 
 Damped oscillation noise Unstable system

Overshoot

Undershoot

o Ringing occurs in both 
with and without feedback 
systems. 
o Ringing affects both 
input and output signals. 

To meet the specified requirements
○ High stability 
○ Fast transient response, and 
○ Good steady-state performance.

STABILITY TEST
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4. Stability Test for Electronic Systems
Self-loop Function in A Transfer Function 

( ( )
(( ) )

)
)

1
(out

in

H V
V

A
L


 







Transfer function

( )L 

( )A 
( )H 

: Open loop function 
: Transfer function 

: Self-loop function 

Linear system
Input Output

( )H 
( )inV ( )outV

0 1

0 1

( ) ... ( )
(

)
) ... (

(
)

n
n n

n
n n

H
b j b j b
a j a j a

 
 

 



  


  

Model of a linear system

oMagnitude-frequency plot
oAngular-frequency plot 

oPolar chart  Nyquist chart

oMagnitude-angular diagram  Nichols diagram

Bode plots

Variable:  angular frequency (ω)
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4. Stability Test for Electronic Systems
Behaviors of 2nd-Order Transfer Function
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•Under-damping:

•Critical damping:

•Over-damping:

Bode plot of transfer function

Nyquist chart of transfer function

0dB

-12dB

-6dB

-90o
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4. Stability Test for Electronic Systems
Behaviors of 2nd-Order Self-loop Function
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•Under-damping:

•Critical damping:

•Over-damping:

Bode plot of self-loop function

Nyquist chart of self-loop function
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4. Stability Test for Electronic Systems
Operating Regions of 2nd-Order System

Over-damping:
Phase margin is 88 degrees.
Critical damping:
Phase margin is 76.3 degrees.
Under-damping: 
Phase margin is 52 degrees.

98o

103.7o
128o

Magnitude-angular response of self-loop functionMagnitude response of transfer function

Transient response

0dB

-12dB

-6dB
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4. Stability Test for Electronic Systems
Alternating Current Conservation for Passive Networks
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4. Stability Test for Electronic Systems
Stability Test for 2rd-Order Passive RLC LPF

Passive RLC Low-pass Filter
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4. Stability Test for Electronic Systems
Stability Test for 2rd-Order Active Ladder LPF

Implemented circuit
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4. Stability Test for Electronic Systems
Alternating Current Conservation for Active Networks
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4. Stability Test for Electronic Systems
Analysis of Shunt-Shunt Feedback Amplifier
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Apply superposition at the nodes Vπ and Vout, we have



27

4. Stability Test for Electronic Systems
Stability Test of Shunt-Shunt Feedback Amplifier

BJT shunt-shunt feedback amplifier Bode plot of self-loop function L(ω)

Bode plot of transfer function H(ω)

90o

Phase margin = 90 degrees

500 kHz

500 kHz
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4. Stability Test for Electronic Systems
Analysis of Op Amp without Miller’s Capacitor

Without frequency compensation

Simplified model

Small signal model

Transfer function H(ω) and self-loop function L(ω)
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4. Stability Test for Electronic Systems
Stability Test of Op Amp without Miller’s Capacitor

Bode plot of self-loop function L(ω)

Bode plot of transfer function H(ω)

92o

Op amp without frequency compensation

Phase margin = 88 degrees

GBW =50 GHz

80 MHz

BW =80 GHz
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4. Stability Test for Electronic Systems
Unity-Gain Amplifier without Miller’s Capacitor

Bode plot of transfer function H(ω)

Nichols plot of self-loop function L(ω)

Unity-Gain Amplifier 

Transient response 

167o

Phase margin = 13 degrees
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4. Stability Test for Electronic Systems
Two-stage Op Amp with Frequency Compensation

With Miller’s capacitor and resistor

Simplified model

Small signal model

Transfer function H(ω)

Self-loop function L(ω)
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4. Stability Test for Electronic Systems
Behaviors of Op Amp with Frequency Compensation

Model of two-stage op amp

90o

Bode plot of transfer function H(ω)

Nichols plot of self-loop function L(ω)
Under-damping:
R1= 2 kΩ, C1 = 1 pF 
Critical damping:
R1 = 3.5 kΩ, C1 = 0.2 pF 
Over-damping:
R1 = 3.5 kΩ, C1 = 0.8 pF

Phase margin = 90 
degrees

GBW < 1 GHz
BW < 1 MHz
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4. Stability Test for Electronic Systems
Stability Test for Op Amp with Miller’s Capacitor

Implemented 
circuit150o90o79o

Simulated 
transient 
response

Nichols plot 
of self-loop 
function

Unity-gain 
amplifier 
with Miller’s 
capacitor

Bode plot 
of transfer 
function

Measured 
transient 
response
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4. Stability Test for Electronic Systems
Stability Test for 3rd-Order Sallen-Key LPF

Implemented circuit

Single ended 3rd -order Sallen-Key LPF

Derivation of self-loop function

Transfer function 

Self-loop function
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4. Stability Test for Electronic Systems
Measurement Results of 3rd-order Sallen-Key LPF

Over-damping:
Phase margin is 77 degrees.
Critical damping:
Phase margin is 70 degrees.
Under-damping: 
Phase margin is 64 degrees.

Transient response

Bode plot of transfer function Nichols plot of self-loop function

103o

110o
116o

0.5dB

-16dB

-6dB



This work:
• Investigation of system noise: image noise, ripple noise, and 

ringing noise
• Proposal of superposition formula for deriving transfer 

function in multi-source networks
• Derivation of transfer function and image rejection ratio for 

high-order polyphase filters and complex filters in all 
frequency domain

• Flat pass-band gain for 4th-order polyphase filter using two 
RC band-stop filters

• Implementations of 4th-order polyphase filter and 6th-order 
quadrature signal generation network.

• Ripple reduction for DC-DC buck converter using linear 
swept frequency modulation, and LC notch harmonic filter

5. Conclusions



• Implementation of a DC-DC buck converter with LC notch 
harmonic filter 

• Proposal of an alternating current conservation for deriving 
self-loop function in feedback networks

• Stability test for feedback amplifier networks: shunt-shunt 
feedback amplifier, two-stage op amp with and without 
frequency compensation

• Stability test for filter networks: RLC low-pass filter, active 
ladder low-pass filter, 3-order Sallen-Key low-pass filter   

Future of work:
• Stability test for parasitic components in transmission lines, 

printed circuit boards, physical layout layers
• Investigation of I/Q mismatches and DC offsets in multi-

phase networks

5. Conclusions
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