

Nov. 3-6, 2020 Wyndham Grand Plaza Royale Colorful Hotel, Kunming, China

DESIGN OF LC HARMONIC NOTCH FILTER FOR RIPPLE REDUCTION IN STEP-DOWN DC-DC BUCK CONVERTER

MinhTri Tran^{*}, Yasunori Kobori, Anna Kuwana,

and Haruo Kobayashi

Gunma University, Japan

Outline

1. Research Background

- Motivation, objectives and achievements
- Characteristics of an adaptive feedback network
- 2. Analysis of Power-Stage of DC-DC Converter
- Operating regions of 2nd-order systems
- Phase margin of power-stage of DC-DC converter
- **3. Ripple Reduction for DC-DC Converters**
- Linear swept frequency modulation
- Passive and active LC Harmonic Notch filters
- 4. Conclusions

1. Research Background

Noise in Electronic Systems

Performance of a system

Signal to Noise Ratio:

Common types of noise:

- Electronic noise
- Thermal noise,
- Intermodulation noise,
- Cross-talk,
- Impulse noise,
- Shot noise, and
- Transit-time noise.

Performance of a device

 $= \frac{\text{Output SNR}}{\text{Input SNR}}$

Device noise:

- Flicker noise,
- Thermal noise,
- White noise.

DC-DC converters

- Overshoot,
- Ringing
- Ripple

1. Research Background

Effects of Ripple and Ringing on Electronic Systems

- Ringing is overshoot/undershoot voltage or current when it's seen on time domain.
- Ripple is wasted power, and has many undesirable effects in a DC circuit.
- Ringing does the following things:
- Causes EMI noise,
- Increases current flow,
- Consumes the power,
- Decreases the performance,
- Damages the devices.

Ripple does the following things:

- Heats components,
- Increases noise,
- Creates the distortion,
- Causes digital circuits to operate improperly.

1. Research Background Objectives of Study

- Ringing test for power-stage of DC-DC buck converters.
- **Ripple reduction** using linear swept frequency modulation and LC harmonic notch filters
- Proposed design of an active inductor for the harmonic notch filter for DC-DC buck converter using a general impedance converter
- Measurement of self-loop function in powerstage of DC-DC buck converter

1. Research Background

Achievements of Study

Derivation of self-loop function

Phase margin of power stage

1. Research Background Approaching Methods

Simplified power-stage

Measurement set up

Design of DC-DC buck converter

1. Research Background

Characteristics of Adaptive Feedback Network

Adaptive feedback is used to control the output source along with the decision source (DC-DC Buck converter).
 Transfer function of an adaptive feedback network is significantly different from transfer function of a linear negative feedback network.

→ Loop gain is independent of frequency variable (referent voltage, feedback voltage, and error voltage are DC voltages).

1. Research Background Self-loop Function in A Transfer Function

Linear system

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

○ Polar chart → Nyquist chart
 ○ Magnitude-frequency plot
 ○ Angular-frequency plot
 ○ Magnitude-angular diagram → Nichols diagram

Model of a linear system

$$H(\boldsymbol{\omega}) = \frac{b_0(j\omega)^n + \dots + b_{n-1}(j\omega) + b_n}{a_0(j\omega)^n + \dots + a_{n-1}(j\omega) + a_n}$$

 $A(\omega)$: Open loop function $H(\omega)$: Transfer function $L(\omega)$: Self-loop function Variable: angular frequency (ω)

1. Research Background Alternating Current Conservation

Transfer function

Simplified linear system

Self-loop function

inductance

Derivation of self-loop function

1. Research Background Limitations of Conventional Methods

- Middlebrook's measurement of loop gain
- → Applying only in feedback systems (DC-DC converters).
- **o Replica measurement of loop gain**
- →Using two identical networks (not real measurement).
- Nyquist's stability condition
- \rightarrow Theoretical analysis for feedback systems (Lab tool).
- Nichols chart of loop gain
- \rightarrow Only used in feedback control theory (Lab tool).

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Characteristics of an adaptive feedback network
- 2. Analysis of Power-Stage of DC-DC Converter
- Operating regions of 2nd-order systems
- Phase margin of power-stage of DC-DC converter
- **3. Ripple Reduction for DC-DC Converters**
- Linear swept frequency modulation
- Passive and active LC Harmonic Notch filters
- 4. Conclusions

2. Analysis of Power-Stage of DC-DC Converter Simulations of Second-order Transfer Function

2. Analysis of Power-Stage of DC-DC Converter Behaviors of Second-order Transfer Function

Second-order transfer function: $H(\omega) = \frac{1}{1 + a_0 (j\omega)^2 + a_1 j\omega}$

Case	Over-damping	Critically damping	Under-damping	
Delta (Δ)	$\frac{1}{a_0} < \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 > 0$	$\frac{1}{a_0} = \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 = 0$	$\frac{1}{a_0} > \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 < 0$	
$\begin{array}{c} Module \\ H(\omega) \end{array}$	$\frac{\frac{1}{a_0}}{\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}$	$\frac{\frac{1}{a_0}}{\left[\omega^2 + \left(\frac{a_1}{2a_0}\right)^2\right]} = \frac{1}{2} = -6dB$	$\boxed{\frac{\frac{1}{a_{0}}}{\sqrt{\left(\omega - \sqrt{\frac{1}{a_{0}} - \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\right)^{2} + \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\sqrt{\left(\omega + \sqrt{\frac{1}{a_{0}} - \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\right)^{2} + \left(\frac{a_{1}}{2a_{0}}\right)^{2}}}$	
Angular $\theta(\omega)$	$-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}-\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}+\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}\right)$	$-2 \arctan\left(\frac{2a_0\omega}{a_1}\right)$	$-\arctan\left(\frac{\omega - \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right) - \arctan\left(\frac{\omega + \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)$	
$\omega_{cut} = \frac{a_1}{2a_0}$	$ H(\omega_{cut}) < \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) > -\frac{\pi}{2}$	$ H(\omega_{cut}) = \frac{2a_0}{a_1} \Theta(\omega_{cut}) = -\frac{\pi}{2}$	$\left H(\omega_{cut}) \right > \frac{2a_0}{a_1} \qquad \theta(\omega_{cut}) < -\frac{\pi}{2}$	

2. Analysis of Power-Stage of DC-DC Converter Simulations of Second-order Self-loop Function

•Under-damping:
$$L_1(\omega) = (j\omega)^2 + j\omega;$$

•Critical damping: $L_2(\omega) = (j\omega)^2 + 2j\omega;$
•Over-damping: $L_3(\omega) = (j\omega)^2 + 3j\omega;$

Nyquist chart of self-loop function

Bode plot of self-loop function

2. Analysis of Power-Stage of DC-DC Converter Behaviors of Second-order Self-loop Function

Second-order self-loop function: $L(\omega) = j\omega [a_0 j\omega + a_1]$

Case	Over-damping		Critical damping		Under-damping	
Delta (Δ)	$\Delta = a_1^2 - 4a_0 > 0$		$\Delta = a_1^2 - 4a_0 = 0$		$\Delta = a_1^2 - 4a_0 < 0$	
$ L(\omega) $	$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$	
θ(ω)	$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$		$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$		$\frac{\pi}{2}$ + arctan $\frac{a_0\omega}{a_1}$	
$\omega_1 = \frac{a_1}{2a_0}\sqrt{\sqrt{5}-2}$	$ L(\omega_1) > 1$	$\pi - \theta(\omega_1) > 76.3^{\circ}$	$ L(\omega_1) = 1$	$\pi - \theta(\omega_1) = 76.3^{\circ}$	$\left L(\omega_1)\right < 1$	$\pi - \theta(\omega_1) < 76.3^{\circ}$
$\omega_2 = \frac{a_1}{2a_0}$	$ L(\omega_2) > \sqrt{5}$	$\pi - \theta(\omega_2) > 63.4^{\circ}$	$\left L(\omega_2)\right = \sqrt{5}$	$\pi - \Theta(\omega_2) = 63.4^{\circ}$	$ L(\omega_2) < \sqrt{5}$	$\pi - \theta(\omega_2) < 63.4^{\circ}$
$\omega_3 = \frac{a_1}{a_0}$	$ L(\omega_3) > 4\sqrt{2}$	$\pi - \theta(\omega_3) > 45^{\circ}$	$ L(\omega_3) = 4\sqrt{2}$	$\pi - \theta(\omega_3) = 45^\circ$	$\left L(\omega_3)\right < 4\sqrt{2}$	$\pi - \theta(\omega_3) < 45^{\circ}$

2. Analysis of Power-Stage of DC-DC Converter Summary of Operating Regions of 2nd-Order System

Transient response

Nichols plot of self-loop function

Over-damping:

→Phase margin is 88 degrees. Critical damping:

→Phase margin is 76.3 degrees. Under-damping:

 \rightarrow Phase margin is 52 degrees.

2. Analysis of Power-Stage of DC-DC Converter **Behaviors of power-stage of DC-DC Converter**

Transfer function & self-loop function:

٠

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{1 + a_0 (j\omega)^2 + a_1 j\omega};$$

$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;$$

Where: $a_0 = LC; \quad a_1 = \frac{L}{R};$
 $\omega_0 = 1/\sqrt{LC};$
 $|Z_L| = \omega_0 L; \quad |Z_C| = 1/\omega_0 C;$

Operating regions

•Over-damping:

•Critical damping:

•Under-damping:

$$\frac{1}{LC} < \left(\frac{R}{2L}\right)^2 \Leftrightarrow |Z_L| = |Z_C| < R/2 \qquad \left| \begin{array}{c} Z_L \\ Z_L \\ Z_L \\ \end{array} \right| = \left| \begin{array}{c} Z_C \\ Z_C \\ \end{array} \right| = 2R \\ Balanced charging \\ discharging time condition \\ \frac{1}{LC} > \left(\frac{R}{2L}\right)^2 \Leftrightarrow |Z_L| = |Z_C| > R/2 \end{array}$$

2. Analysis of Power-Stage of DC-DC Converter Phase Margin of Power-Stage of DC-DC Converter

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Characteristics of an adaptive feedback network
- 2. Analysis of Power-Stage of DC-DC Converter
- Operating regions of 2nd-order systems
- Phase margin of power-stage of DC-DC converter
- **3. Ripple Reduction for DC-DC Converters**
- Linear swept frequency modulation
- Passive and active LC Harmonic Notch filters
- 4. Conclusions

3. Ripple Reduction for DC-DC Converters

Ripple Reduction using Linear Swept Frequency Modulation

Linear swept frequency modulation

3. Ripple Reduction for DC-DC Converters Ripple Reduction using LC Harmonic Notch Filter

Ripple Reduction for DC-DC Converters 3. Passive and Active LC Harmonic Notch Filters

Schematic diagram of DC-DC converter Switching Stage Power Stage Passive LC harmonic notch filter 10dB 0dB DC Output **Under-damping** (dB) ന്ന -10dB PWM DC Input -20dB L1 Magnitude region CONTROL C1 Load -30dB D₁ BLOCK C2 $\leq R_1$ $\leq R_2$ Cf -40dB _ C_{in} 12 V -50dB -60dB **₹**^R1 -70dB L₂ Ŧ -80dB DC Feedback -90dB **Passive notch filter** Passive -100dB Inductor -110dB 100 Hz 1 kHz 10 kHz 100 kHz 500 kHz Frequency (Hz) Active LC harmonic notch filter 10dB Active 0dB **Under-damping** Inductor Ra -10dB Magnitude (dB) region -20dB -30dB -40dB **Approximated** -50dB -60dB value of -70dB $Z_{L} = \frac{R_{2}}{R_{1}} \frac{R_{3}}{Z_{C}} Z_{out} = \frac{R_{2}R_{3}}{R_{1}} SCZ_{out}$ -80dB Active notch filter -90dB inductor -100dB -110dB 500 kHz 100 Hz 1 kHz 10 kHz 100 kHz

Behaviors of LC harmonic notch filters

Frequency (Hz)

Passive component parameters

 $L_1 = 220 \text{ uH}, C_1 = 100 \text{ uF}, R_1 = 4 \text{ k}\Omega, R_2 = 2 \text{ k}\Omega, R_1 = 5 \Omega, C_2 = 65 \text{ nF}, L_2 = 12 \text{ uH}, R_3 = 15$ $k\Omega$, $C_1 = 100 \text{ pF}$, $R_4 = 1 \text{ } k\Omega$, $R_5 = 1 \text{ } k\Omega$, and fn at 180 kHz. 22

3. Ripple Reduction for DC-DC Converters Implemented Circuit for DC-DC Converter

Design parameters

Input Voltage (Vin)	12 V
Output Voltage (Vo)	5.0 V
Output Current (Io)	1 A
Clock Frequency (Fck)	180 kHz
Output Ripple	< 10 mVpp

Implemented circuit

Measurement set up

3. Ripple Reduction for DC-DC Converters Measurement Results of Proposed Design Circuit

- Reduce the cut-off frequency of the power-stage
- → Reduce the ripple caused by high-order harmonic signals
- Improvement of phase margin of the power-stage
- → Reduce the overshoot caused by the passive components

160

3. Ripple Reduction for DC-DC Converters Ripple Reduction using Harmonic Notch Filter

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Characteristics of an adaptive feedback network
- 2. Analysis of Power-Stage of DC-DC Converter
- Operating regions of power-stage of DC-DC converter
- Passive parallel RLC network
- **3. Ripple Reduction for DC-DC Converters**
- Linear swept frequency modulation
- Passive and active LC Harmonic Notch filters

4. Conclusions

4. Comparison

Features	This work	Replica measurement	Middlebrook's method
Main objective	Self-loop function	Loop gain	Loop gain
Transfer function accuracy	Yes	Νο	Νο
Ringing Test	Yes	Yes	Yes
Operating region accuracy	Yes	Νο	No
Phase margin accuracy	Yes	No	No
Passive networks	Yes	Νο	No

4. Discussions

- Loop gain is independent of frequency variable.
- Doop gain in adaptive feedback network is significantly different from self-loop function in linear negative feedback network.

Nichols chart is only used in MATLAB simulation.

Nichols Chart 0 dF 30 0.25 dB 0.5 dB Open-Loop Gain (dB) 0 01 0 01 1 dB 3 dB -3 dB 6 dB -6 dB -12 dB -10 -20 dB -20 180 270 450 540 630 720 Open-Loop Phase (deg)

https://www.mathworks.com/help/control/ref/nichols.html

Nichols chart isn't used widely in practical measurements (only used in control theory).

4. Conclusions

This work:

- Investigation of behaviors of power-stage in DC-DC converters based on alternating current conservation
- Proposed designs of passive and active LC harmonic notch filters for ripple reduction
 → Phase margin improvement from 46 degrees into 49 degrees

→ Ripple reduction from 11 mVpp into 5 mVpp Future of work:

Stability test for dynamic loads, and parasitic components in printed circuit boards

References

[1] H. Kobayashi, T. Nabeshima, Handbook of Power Management Circuits, Pan Stanford Publisher (2016).

[2] M. Tran, N. Miki, Y. Sun, Y. Kobori, H. Kobayashi, "*EMI Reduction and Output Ripple Improvement of Switching DC-DC Converters with Linear Swept Frequency Modulation*" IEEE Int. Conf. ICSICT2018, 2018.

[3] M. Tran, Y. Sun, N. Oiwa, Y. Kobori, A. Kuwana, H. Kobayashi, "*Mathematical Analysis and Design of Parallel RLC Network in Step-down Switching Power Conversion System*", J. Mechanical and Electrical Intelligent System, May 2020.

[4] M. Tran, Y. Sun, Y. Kobori, A. Kuwana, H. Kobayashi, "*Design Proposal for Inductor Type Buck Converter in Bluetooth Receiver Chip with Overshoot Cancellation and Ripple Reduction Technique*", J. Applied Mechanics and Materials (accepted).

[5] M. Tran, Y. Sun, N. Oiwa, Y. Kobori, A. Kuwana, H. Kobayashi, "*Fast Response, Small Ripple, Low Noise Switching Converter with Digital Charge Time Control and EMI Harmonic Filter*", J. Mechanical and Electrical Intelligent System, Dec. 2019.

[6] M. Tran, Y. Sun, Y. Kobori, A. Kuwana, H. Kobayashi, "*Minimum Output Ripple and Fixed Operating Frequency Based on Modulation Injection for COT Ripple Control Converter*", IEEE Int. Conf. ASIC, 2019.

[7] M. Tran, Yifei Sun, Y. Kobori, A. Kuwana, H. Kobayashi, "*Overshoot Cancelation Based on Balanced Charge-Discharge Time Condition for Buck Converter in Mobile Applications*", IEEE Int. Conf. ASIC, 2019.

[8] M. Tran, A. Kuwana, H. Kobayashi, "*Design of Active Inductor and Stability Test for Passive RLC Low Pass Filter*", Int. Conf. Signal and Image Processing, London, UK, July, 2020.

[9] M. Tran, A. Kuwana, H. Kobayashi, "*Design of Active Inductor and Stability Test for Ladder RLC Low Pass Filter Based on Widened Superposition and Voltage Injection*", IIAE Int. Conf. Industrial Application Engineering, Shimane, Japan, March, 2020.

2020 IEEE 15th International Conference on Solid-State and Integrated Circuit Technology

Nov. 3-6, 2020

Wyndham Grand Plaza Royale Colorful Hotel, Kunming, China

Thank you very much! 谢谢

