

Nov. 3-6, 2020

Wyndham Grand Plaza Royale Colorful Hotel, Kunming, China

DESIGN OF SIXTH-ORDER PASSIVE QUADRATURE SIGNAL GENERATION NETWORK BASED ON POLYPHASE FILTER

MinhTri Tran^{*}, Akemi Hatta, Anna Kuwana,

and Haruo Kobayashi

Gunma University, Japan

Outline

1. Research Background

- Motivation, objectives and achievements
- Review of characteristics of Low-IF receiver
- 2. Investigation of Multi-Phase Networks
- Superposition theorem for multi-source networks
- Design principle for passive polyphase filters
- **3. Proposed Designs and Experimental Results**
- Analysis of quadrature signal generation networks
- Simulation and measurement results
- 4. Conclusions

1. Research Background Motivation of Study

Performance of a system

Signal to Noise Ratio:

Common types of noise:

- Electronic noise
- Thermal noise,
- Intermodulation noise,
- Cross-talk,
- Impulse noise,
- Shot noise, and
- Transit-time noise.

Performance of a device

 $\mathbf{F} = \frac{\mathbf{Output \ SNR}}{\mathbf{Input \ SNR}}$

Device noise:

- Flicker noise,
- Thermal noise,
- White noise.

Multi-phase networks

- Image noise,
- I/Q mismatches
- DC offsets

1. Research Background Objectives of Study

- Derivation of transfer function in multi-source systems using superposition theorem
- Investigation of behaviors of high-order passive RC polyphase filter networks
- Analysis and design of quadrature signal generation network for measuring frequency response of polyphase and complex filters
- Implementation of 6th-oder polyphase signal generation based on polyphase filter circuits

1. Research Background

Achievements of Study

Superposition formula for multi-source networks

$$V_{O}(t)\sum_{i=1}^{n}\frac{1}{Z_{i}}+V_{O}(t)\sum_{i=1}^{n}\frac{1}{Z_{si}}+\frac{1}{\sum_{k=1}^{n}\frac{1}{Z_{pik}}}=\sum_{i=1}^{n}\left(\frac{V_{i}(t)}{Z_{i}}+I_{ai}(t)-I_{gi}(t)\right)$$

Conventional superposition

 \rightarrow Solving for every source (several times).

Implemented circuit

Experimental results

1. Research Background Characteristics of Low-IF Receiver Signals

1. Research Background Positive Polyphase Signals on Frequency Domain

(e) Positive angular frequency wave

(f) Spectrum of positive angular frequency wave

1. Research Background Negative Polyphase Signals on Frequency Domain

7

1. Research Background Polyphase Signals on Frequency Domain

Negative polyphase signals

Positive polyphase signals

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Review of characteristics of Low-IF receiver
- 2. Investigation of Multi-Phase Networks
- Superposition theorem for multi-source networks
- Design principle for passive polyphase filters
- **3. Proposed Designs and Experimental Results**
- Analysis of quadrature signal generation networks
- Simulation and measurement results
- 4. Conclusions

2. Investigation of Multi-Phase Networks Superposition Theorem for Multi-Source Systems

Superposition formula:

- V_o(t) : Voltage at one node
- V_i(t) : Input voltage sources
- I_{ai}(t) : Ahead-toward current sources
- I_{gi}(t) : Ground-toward current sources
- Z_{i, si, pi}(t): Impedances at each branch

Multi-source systems, feedback
 networks (op amps, amplifiers),
 polyphase filters, complex filters...

2. Investigation of Multi-Phase Networks Design Principle for Polyphase Filter Networks

Complementation between low-pass and high-pass circuits → a passive polyphase filter

Wanted Signals

Pass-band filter (wanted signals)

Image Signals

Complementary high-pass

Notch-band filter (image signals)

2. Investigation of Multi-Phase Networks Analysis of 2nd–Order Polyphase Filter

Apply superposition at each node

$$\begin{split} V_{out} & \left(\frac{1}{Z_{C1}} + \frac{1}{R_1}\right) = \frac{V_a}{R_1} + \frac{\left(+j\right)^3 V_a}{Z_{C1}}; \\ V_a & \left(\frac{1}{Z_{C2}} + \frac{1}{R_2} + \frac{2}{R_1 + Z_{C1}}\right) = \frac{V_{in}}{R_2} + \frac{\left(+j\right)^3 V_{in}}{Z_{C2}}; \end{split}$$

Transfer function for positive polyphase signal

$$H_{P}(\omega) = \frac{V_{out}}{V_{in}} = \frac{\left[1 + (+j)^{3} b_{1} j\omega\right] \left[1 + (+j)^{3} b_{2} j\omega\right]}{a_{0} (j\omega)^{2} + a_{1} j\omega + 1};$$

Transfer function for negative polyphase signal

$$H_{N}(\omega) = \frac{V_{out}}{V_{in}} = \frac{\left[1 + (-j)^{3} b_{1} j\omega\right] \left[1 + (-j)^{3} b_{2} j\omega\right]}{a_{0} (j\omega)^{2} + a_{1} j\omega + 1};$$

Here:
$$b_0 = R_1 C_1; b_1 = R_2 C_2; a_0 = b_0 b_1; a_1 = b_0 + b_1 + 2R_2 C_1;$$

Image rejection ratio (IRR)

$$IRR(\omega) = \frac{\left|H_{P}(\omega)\right|}{\left|H_{N}(\omega)\right|} = \frac{\left|(1+b_{1}\omega)(1+b_{2}\omega)\right|}{\left|(1-b_{1}\omega)(1-b_{2}\omega)\right|};$$

2. Investigation of Multi-Phase Networks Behaviors of 2nd–Order Polyphase Filter

Transfer function in all frequency domain

$$H(\omega) \Big| = \frac{(1+b_1\omega)(1+b_2\omega)}{\sqrt{(1-a_0\omega^2)^2 + (a_1\omega)^2}}; \omega \in \mathbb{R}$$

Here, R1 = 1 k Ω , C1 = 227 pF, R2 = 1 k Ω , C2 = 114 pF, at f₁ = 700 kHz, f₂ = 1.4 MHz,

Bode plot of transfer function in all frequency domain

2. Investigation of Multi-Phase Networks Transfer Function of 6th-Order RC Polyphase Filter

Apply the superposition principle at nodes V_a , V_b , V_c , V_d , V_e , V_{out} , we get

$$\begin{split} V_{out}\left(\frac{1}{Z_{C1}} + \frac{1}{R_{1}}\right) &= \frac{V_{a}}{R_{1}} + \frac{\left(+j\right)^{3}V_{a}}{Z_{C1}}; V_{a}\left(\frac{1}{Z_{C2}} + \frac{1}{R_{2}} + \frac{2}{M_{A}}\right) = \frac{V_{a}}{R_{2}} + \frac{\left(+j\right)^{3}V_{b}}{Z_{C2}}; \\ V_{b}\left(\frac{1}{Z_{C3}} + \frac{1}{R_{3}} + \frac{1}{M_{B1}} + \frac{1}{M_{B2}}\right) &= \frac{V_{c}}{R_{3}} + \frac{\left(+j\right)^{3}V_{c}}{Z_{C3}}; V_{c}\left(\frac{1}{Z_{C4}} + \frac{1}{R_{4}} + \frac{1}{M_{C1}} + \frac{1}{M_{C2}}\right) = \frac{V_{d}}{R_{4}} + \frac{\left(+j\right)^{3}V_{d}}{Z_{C4}}; \\ V_{d}\left(\frac{1}{Z_{C5}} + \frac{1}{R_{5}} + \frac{1}{M_{D1}} + \frac{1}{M_{D2}}\right) &= \frac{V_{e}}{R_{5}} + \frac{\left(+j\right)^{3}V_{e}}{Z_{C5}}; V_{e}\left(\frac{1}{Z_{C6}} + \frac{1}{R_{6}} + \frac{1}{M_{E1}} + \frac{1}{M_{E2}}\right) = \frac{V_{in}}{R_{6}} + \frac{\left(+j\right)^{3}V_{in}}{Z_{C6}}; \end{split}$$

Transfer function

$$H(\omega) = \frac{[1+b_1\omega][1+b_2\omega][1+b_3\omega][1+b_4\omega][1+b_5\omega][1+b_6\omega]}{a_0(j\omega)^6 + a_1(j\omega)^5 + a_2(j\omega)^4 + a_3(j\omega)^3 + a_4(j\omega)^2 + a_5j\omega + 1};$$
14

2. Investigation of Multi-Phase Networks Characteristics of 6th-order RC Polyphase Filter

Behaviors of transfer function in all frequency domain

$$\left|H_{p}\left(\omega\right)\right| = \begin{cases} \lim_{\omega \to 0^{+}} \left|H_{p}\left(\omega\right)\right| = 1 \\ Max_{1}\left\{H_{p}\left(\omega\right)\right\} as \ \omega_{\max 1} \\ Max_{1}\left\{H_{p}\left(\omega\right)\right\} as \ \omega_{\max 1} \\ Max_{2}\left\{H_{p}\left(\omega\right)\right\} as \ \omega_{\max 2} \\ \lim_{\omega \to +\infty} \left|H_{p}\left(\omega\right)\right| = 1 \\ Max_{2}\left\{H_{p}\left(\omega\right)\right\} as \ \omega_{\max 2} \\ \lim_{\omega \to +\infty} \left|H_{p}\left(\omega\right)\right| = 1 \\ Max_{5}\left\{H_{n}\left(W_{n}\right)\right\} \\ Max_{5}\left\{H_{n}\left(W_{n}\right)\right\} \\ H_{n}\left(W_{n}\right) \\ H_{n}$$

$$\begin{cases} \lim_{\omega \to 0^{-}} H_{n}(\omega) = 1; Min_{1} \{H_{n}(\omega)\} = 0 \quad as \; \omega_{1} = -\frac{1}{b_{1}} \\ Max_{1} \{H_{n}(\omega)\} \quad as \; \omega_{max1} = -\frac{1}{\sqrt{b_{1}b_{2}}}; Min_{2} \{H_{n}(\omega)\} \quad as \; \omega_{2} = -\frac{1}{b_{2}} \\ Max_{2} \{H_{n}(\omega)\} \quad as \; \omega_{max2} = -\frac{1}{\sqrt{b_{2}b_{3}}}; Min_{3} \{H_{n}(\omega)\} \quad as \; \omega_{3} = -\frac{1}{b_{3}} \\ Max_{3} \{H_{n}(\omega)\} \quad as \; \omega_{max3} = -\frac{1}{\sqrt{b_{3}b_{4}}}; Min_{4} \{H_{n}(\omega)\} \quad as \; \omega_{4} = -\frac{1}{b_{4}} \\ Max_{4} \{H_{n}(\omega)\} \quad as \; \omega_{max4} = -\frac{1}{\sqrt{b_{4}b_{5}}}; Min_{5} \{H_{n}(\omega)\} \quad as \; \omega_{5} = -\frac{1}{b_{5}} \\ Max_{5} \{H_{n}(\omega)\} \quad as \; \omega_{max5} = -\frac{1}{\sqrt{b_{5}b_{6}}}; Min_{6} \{H_{n}(\omega)\} \quad as \; \omega_{6} = -\frac{1}{b_{5}}; \lim_{\omega \to -\infty} H_{n}(\omega) = 1 \\ \theta_{1} = 0; \; \omega \to 0^{-}; \theta_{2} = \frac{-5\pi}{8} \to \frac{3\pi}{8}; \; \omega_{1} = -\frac{1}{b_{1}} \\ \text{Negative} \\ \theta_{3} = \frac{\pi}{4}; \; \omega_{max1} = -\frac{1}{\sqrt{b_{1}b_{2}}}; \theta_{4} = \frac{\pi}{8} \to \frac{9\pi}{8}; \; \omega_{2} = -\frac{1}{b_{2}} \\ \text{frequency} \\ \theta_{5} = \frac{15\pi}{16}; \; \omega_{max3} = -\frac{1}{\sqrt{b_{2}b_{3}}}; \theta_{6} = \frac{3\pi}{4} \to \frac{7\pi}{4}; \; \omega_{3} = -\frac{1}{b_{3}} \\ \theta_{7} = \frac{25\pi}{16}; \; \omega_{max3} = -\frac{1}{\sqrt{b_{3}b_{4}}}; \theta_{8} = \frac{11\pi}{8} \to \frac{19\pi}{8}; \; \omega_{4} = -\frac{1}{b_{4}} \\ \theta_{9} = \frac{37\pi}{16}; \; \omega_{max4} = -\frac{1}{\sqrt{b_{4}b_{5}}}; \theta_{10} = \frac{9\pi}{4} \to \frac{13\pi}{4}; \; \omega_{5} = -\frac{1}{b_{5}} \\ \theta_{11} = \frac{37\pi}{16}; \; \omega_{max5} = -\frac{1}{\sqrt{b_{5}b_{6}}}; \theta_{12} = \frac{9\pi}{4} \to \frac{13\pi}{4}; \; \omega_{5} = -\frac{1}{b_{6}}; \theta_{13} = \frac{5\pi}{2}; \; \omega \to \infty \\ \textbf{15} \end{cases}$$

2. Investigation of Multi-Phase Networks Bode Plot of 6th-Order RC Polyphase Filter

Passive component parameters

 $R_1 = 1 k\Omega$, $C_1 = 318 pF$, $R_2 = 1 kΩ$, $C_2 = 199 pF$, $R_3 = 1 kΩ$, $C_3 = 106 pF$, $R_4 = 1 kΩ$, $C_4 = 53.1 pF$, $R_5 = 1 kΩ$, $C_5 = 26.5 pF$, $R_6 = 1 kΩ$, $C_6 = 16.8 pF$, $f_1 = 500 kHz$, $f_2 = 800 kHz$, and $f_3 = 1.5 MHz$, $f_4 = 3 MHz$, $f_5 = 6 MHz$, $f_6 = 9.5 MHz$,

Simulation results of transfer function in all frequency domain

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Review of characteristics of Low-IF receiver
- 2. Investigation of Multi-Phase Networks
- Superposition theorem for multi-source networks
- Design principle for passive polyphase filters
- **3. Proposed Designs and Experimental Results**
- Analysis of quadrature signal generation networks
- Simulation and measurement results
- 4. Conclusions

3. Proposed Designs and Experimental Results Design Principle for Quadrature Signal Generation

Complementation between low-pass and high-pass circuits → a passive quadrature signal generation network

Diagram of a quadratic generator

Circuit of a quadratic generator

3. Proposed Designs and Experimental Results Design of 6th-Order Polyphase Signal Generation

Transfer function

$$H(\omega) = \frac{[1+b_1\omega][1+b_2\omega][1+b_3\omega][1+b_4\omega][1+b_5\omega][1+b_6\omega]}{a_0(j\omega)^6 + a_1(j\omega)^5 + a_2(j\omega)^4 + a_3(j\omega)^3 + a_4(j\omega)^2 + a_5j\omega + 1};$$

19

3. Proposed Designs and Experimental Results Behavior of 6th-order Quadrature Signal Generation

Transfer function

$$H(f) = \frac{\left(1 + \frac{1}{5*10^5}f\right)\left(1 + \frac{1}{8*10^5}f\right)\left(1 + \frac{1}{1.5*10^6}f\right)\left(1 + \frac{1}{3*10^6}f\right)\left(1 + \frac{1}{3*10^6}f\right)\left(1 + \frac{1}{6*10^6}f\right)\left(1 + \frac{1}{9.5*10^6}f\right)}{1.54*10^{-38}\left(jf\right)^6 + 1.85*10^{-30}\left(jf\right)^5 + 2.88*10^{-23}\left(jf\right)^4 + 1.14*10^{-16}\left(jf\right)^3 + 1.35*10^{-10}\left(jf\right)^2 + 4.02*10^{-5}jf + 1.05*10^{-5}f^2}$$

Behaviors of transfer function

$$\begin{aligned} \left| H\left(f\right) \right| &= \begin{cases} \lim_{f \to 0^+} \left| H\left(f\right) \right| = 1\\ Max_1 = 1.09; \ f_{\max 1} = 4.08 * 10^4 \ Hz\\ Min = 0.812; \ f_{\min} = 2.2 * 10^6 \ Hz \ ;\\ Max_2 = 1.09; \ f_{\max 2} = 107 * 10^6 \ Hz\\ \lim_{f \to +\infty} \left| H\left(f\right) \right| = 1 \end{aligned} \\ \theta_{P1} &= 0 \ ; \ f \to 0^+\\ \theta_{P2} &= \frac{-\pi}{4} \ ; \ f_{\max 1} = 4.08 * 10^4 \ Hz\\ \theta_{P3} &= \frac{-3\pi}{2} \ ; \ f_{\min} = 2.2 * 10^6 \ Hz\\ \theta_{P4} &= \frac{-11\pi}{4} \ ; \ f_{\max 2} = 107 * 10^6 \ Hz\\ \theta_{P5} &= -3\pi \ ; \ f \to +\infty \end{aligned}$$

 $R_1 = 1 k\Omega$, $C_1 = 318 pF$, $R_2 = 1 k\Omega$, $C_2 = 199 pF$, $R_3 = 1 k\Omega$, $C_3 = 106 pF$, $R_4 = 1 k\Omega$, $C_4 = 53.1 pF$, $R_5 = 1 k\Omega$, $C_5 = 26.5 pF$, $R_6 = 1 k\Omega$, $C_6 = 16.8 pF$

Simulation result of transfer function

3. Proposed Designs and Experimental Results Block Diagram of Measurement Set Up

3. Proposed Designs and Experimental Results Simplified Block Diagram of Measurement Set Up

3. Proposed Designs and Experimental Results Measurement Set Up for Device Under Test

Device under test

3. Proposed Designs and Experimental Results Measurement Results of Implemented Circuit

Passive balun transfer

Implemented circuit

6th-order polyphase signal generation

24

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Review of characteristics of Low-IF receiver
- 2. Investigation of Multi-Phase Networks
- Superposition theorem for multi-source networks
- Design principle for passive polyphase filters
- **3. Proposed Designs and Experimental Results**
- Analysis of quadrature signal generation networks
- Simulation and measurement results

4. Conclusions

4. Comparison

Features	Proposed formula	Conventional Superposition	Millan's theorem
Effects of all actuating sources	At one time	Several times	At one time
Transfer function accuracy	Yes	No	No
Single-input network analysis	Yes	Yes	Yes
Polyphase network analysis	Yes	Νο	Νο
Complex network analysis	Yes	No	No
Image rejection ratio accuracy	Yes	Νο	Νο

4. Discussions

Transfer function and image rejection ratio give useful information about the behaviors of polyphase filters and complex filters.

Fundamental network analysis theory for multisource systems:

- Compute the effects of all sources at one time,
- **Reduce** the wasteful time,
- **Decrease** the hand calculation times,
- Get the transfer function faster, and
- **Reduce** the network complexity.

4. Conclusions

This work:

- Proposal of superposition formula for multi-source network analysis
- Analysis of high-order passive RC poly-phase filters in all frequency domain
- **Design of quadrature signal generation network**
- Implementation and measurement of 6th-oder quadrature signal generation circuit

Future of work:

• Analysis of I/Q mismatches, DC offsets, and parasitic components in polyphase and complex filters

References

[1] H. Kobayashi, N. Kushita, M. Tran, K. Asami, H. San, A. Kuwana, "*Analog - Mixed-Signal - RF Circuits for Complex Signal Processing*", 13th IEEE Int. Conf. ASICON, Oct. 2019.

[2] H. Tanimoto, "*Exact Design of RC Polyphase Filters and Related Issues*", IEICE Trans. Fund., Vol. E96-A, No.2, Feb. 2013.

[3] K. Asami, N. Kushita, A. Hatta, M. Tran, Y. Tamura, A. Kuwana, H. Kobayashi, "*Analysis and Evaluation Method of RC Polyphase Filter*", 13th IEEE Int. Conf. ASICON, Oct. 2019.

[4] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Mathematical Model and Analysis of 4-Stage Passive RC Polyphase Filter for Low-IF Receiver*", J. Mech. Elect. Intel. Syst. Vol. 3, no. 2, May 2020.

[5] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "Pass-band Gain Improvement Technique for Passive RC Polyphase Filter in Bluetooth Low-IF Receiver using Two RC Band-stop Filters", Spec. Iss.
5th Int. Symp. GUMI & 9th Int. Conf. AMDE AMM, 2020.

[6] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Flat Pass-Band Method with Two RC Band-Stop Filters for 4-Stage Passive RC Polyphase Filter in Low-IF Receiver Systems*", 13th IEEE Int. Conf. ASICON, Oct. 2019.

[7] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Mathematical Analysis and Design of 4-Stage Passive RC Network in RF Front-End System*", 3rd Int. Conf. ICTSS2019, May, 2019.

[8] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Minimum Gain Ripple Technique for Pass-Band of 4-Stage Passive RC Polyphase Filter in Low IF Receivers*", 5th Taiwan and Japan Conf. CAS, Aug. 2019.

2020 IEEE 15th International Conference on Solid-State and Integrated Circuit Technology

Nov. 3-6, 2020

Wyndham Grand Plaza Royale Colorful Hotel, Kunming, China

Thank you very much! 谢谢

