ISTET-2020 2020 IEEE 15th International Conference on Solid-State and Integrated Circuit Technology

Nov. 3-6, 2020

Wyndham Grand Plaza Royale Colorful Hotel, Kunming, China

MEASUREMENTS OF SELF-LOOP FUNCTIONS IN HIGH-ORDER PASSIVE AND ACTIVE LOW-PASS FILTERS

MinhTri Tran^{*}, Anna Kuwana,

and Haruo Kobayashi

Gunma University, Japan

Outline

1. Research Background

- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Stability Test for Linear Non-Feedback Networks
- Alternating current conservation for passive networks
- Ringing test for passive and active RLC low-pass filters
- **3. Stability Test for Linear Feedback Networks**
- Alternating current conservation for active networks
- Ringing test for amplifiers with feedback loops
- 4. Conclusions

Noise in Electronic Systems

Performance of a system

Signal to Noise Ratio:

Common types of noise:

- Electronic noise
- Thermal noise,
- Intermodulation noise,
- Cross-talk,
- Impulse noise,
- Shot noise, and
- Transit-time noise.

Performance of a device

 $\mathbf{F} = \frac{\mathbf{Output \ SNR}}{\mathbf{Input \ SNR}}$

Device noise:

- Flicker noise,
- Thermal noise,
- White noise.

Linear networks

- Overshoot,
- Ringing

Effects of Ringing on Electronic Systems

Ringing represents a distortion of a signal. Ringing is overshoot/undershoot voltage or current when it's seen on time domain.

Ringing does the following things:

- Causes EMI noise,
- Increases current flow,
- Consumes the power,
- Decreases the performance, and
- Damages the devices.

Objectives and Achievements

Objectives

- Investigation of operating regions of linear negative feedback networks
- → Over-damping (high delay in rising time)
- Critical damping (max power propagation)
- → Under-damping (overshoot and ringing)

Achievements

 Measurement of self-loop function and stability test for both passive and active low-pass filters.

1. Research Background Approaching Methods

2nd-order ladder LPF

Balun transformer

Implemented circuit

2nd-order Tow-Thomas LPF

1. Research Background Self-loop Function in A Transfer Function

Linear system

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

○ Polar chart → Nyquist chart
 ○ Magnitude-frequency plot
 ○ Angular-frequency plot
 ○ Magnitude-angular diagram → Nichols diagram

Model of a linear system

$$H(\boldsymbol{\omega}) = \frac{b_0(j\omega)^n + \dots + b_{n-1}(j\omega) + b_n}{a_0(j\omega)^n + \dots + a_{n-1}(j\omega) + a_n}$$

 $A(\omega)$: Open loop function $H(\omega)$: Transfer function $L(\omega)$: Self-loop function Variable: angular frequency (ω)

6

Characteristics of Adaptive Feedback Network

Adaptive feedback is used to control the output source along with the decision source (DC-DC Buck converter).
 Transfer function of an adaptive feedback network is significantly different from transfer function of a linear negative feedback network.

→ Loop gain is independent of frequency variable (referent voltage, feedback voltage, and error voltage are DC voltages).

1. Research Background Alternating Current Conservation

Transfer function

Simplified linear system

Self-loop function

10 mH inductance

Derivation of self-loop function

1. Research Background Limitations of Conventional Methods

- Middlebrook's measurement of loop gain
- → Applying only in feedback systems (DC-DC converters).
- **o Replica measurement of loop gain**
- →Using two identical networks (not real measurement).
- Nyquist's stability condition
- \rightarrow Theoretical analysis for feedback systems (Lab tool).
- Nichols chart of loop gain
- \rightarrow Only used in feedback control theory (Lab tool).

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Stability Test for Linear Non-Feedback Networks
- Alternating current conservation for passive networks
- Ringing test for passive and active RLC low-pass filters
- **3. Stability Test for Linear Feedback Networks**
- Alternating current conservation for active networks
- Ringing test for amplifiers with feedback loops
- 4. Conclusions

2.Stability Test for Linear Non-Feedback Networks Behaviors of 2nd-Order Transfer Function

2.Stability Test for Linear Non-Feedback Networks Characteristics of 2nd-order Transfer Function

Second-order transfer function: $H(\omega) = \frac{1}{1 + a_0(j\omega)^2 + a_1j\omega}$

Case	Over-damping	Critical damping	Under-damping	
Delta (Δ)	$\frac{1}{a_0} < \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 > 0$	$\frac{1}{a_0} = \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 = 0$	$\frac{1}{a_0} > \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 < 0$	
$\begin{array}{c} \textbf{Module} \\ H(\omega) \end{array}$	$\frac{\frac{1}{a_0}}{\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}$	$\frac{\frac{1}{a_0}}{\left[\omega^2 + \left(\frac{a_1}{2a_0}\right)^2\right]} = \frac{1}{2} = -6dB$	$\frac{\frac{1}{a_{0}}}{\sqrt{\left(\omega - \sqrt{\frac{1}{a_{0}} - \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\right)^{2} + \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\sqrt{\left(\omega + \sqrt{\frac{1}{a_{0}} - \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\right)^{2} + \left(\frac{a_{1}}{2a_{0}}\right)^{2}}}$	
Angular $\theta(\omega)$	$-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}-\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}+\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}\right)$	$-2 \arctan\left(\frac{2a_0\omega}{a_1}\right)$	$-\arctan\left(\frac{\omega - \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right) - \arctan\left(\frac{\omega + \sqrt{\frac{1}{a_0} - \left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)$	
$\omega_{cut} = \frac{a_1}{2a_0}$	$ H(\omega_{cut}) < \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) > -\frac{\pi}{2}$	$ H(\omega_{cut}) = \frac{2a_0}{a_1} \theta(\omega_{cut}) = -\frac{\pi}{2}$	$ H(\omega_{cut}) > \frac{2a_0}{a_1}$ $\theta(\omega_{cut}) < -\frac{\pi}{2}$	

2.Stability Test for Linear Non-Feedback Networks Behaviors of 2nd-Order Self-loop Function

•Under-damping:
$$L_1(\omega) = (j\omega)^2 + j\omega;$$

•Critical damping: $L_2(\omega) = (j\omega)^2 + 2j\omega;$
•Over-damping: $L_3(\omega) = (j\omega)^2 + 3j\omega;$

Nyquist chart of self-loop function

Bode plot of self-loop function

2.Stability Test for Linear Non-Feedback Networks Characteristics of 2nd-order Self-loop Function

Second-order self-loop function: $L(\omega) = j\omega[a_0j\omega + a_1]$

Case	Over-damping		Critical damping		Under-damping	
Delta (Δ)	$\Delta = a_1^2 - 4a_0 > 0$		$\Delta = a_1^2 - 4a_0 = 0$		$\Delta = a_1^2 - 4a_0 < 0$	
$ L(\omega) $	$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$	
θ(ω)	$\frac{\pi}{2}$ +	$\arctan \frac{a_0 \omega}{a_1}$	$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$		$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$	
$\omega_1 = \frac{a_1}{2a_0}\sqrt{\sqrt{5}-2}$	$ L(\omega_1) > 1$	$\pi - \theta(\omega_1) > 76.3^{\circ}$	$ L(\omega_1) = 1$	$\pi - \theta(\omega_1) = 76.3^{\circ}$	$ L(\omega_1) < 1$	$\pi - \theta(\omega_1) < 76.3^{\circ}$
$\omega_2 = \frac{a_1}{2a_0}$	$ L(\omega_2) > \sqrt{5}$	$\pi - \theta(\omega_2) > 63.4^{\circ}$	$\left L(\omega_2)\right = \sqrt{5}$	$\pi - \Theta(\omega_2) = 63.4^{\circ}$	$\left L(\omega_2)\right < \sqrt{5}$	$\pi - \theta(\omega_2) < 63.4^{\circ}$
$\omega_3 = \frac{a_1}{a_0}$	$ L(\omega_3) > 4\sqrt{2}$	$\pi - \theta(\omega_3) > 45^\circ$	$\left L(\omega_3)\right = 4\sqrt{2}$	$\pi - \theta(\omega_3) = 45^\circ$	$\left L(\omega_3)\right < 4\sqrt{2}$	$\pi - \theta(\omega_3) < 45^{\circ}$

2.Stability Test for Linear Non-Feedback Networks Summary of Operating Regions of 2nd-Order System

Transient response

Operating regions

Over-damping:

 \rightarrow Phase margin is 88 degrees.

Critical damping:

→Phase margin is 76.3 degrees. Under-damping:

 \rightarrow Phase margin is 52 degrees.

2.Stability Test for Linear Non-Feedback Networks Stability Test for 2nd-Order Passive RLC LPF

Passive RLC Low-pass Filter

Transfer function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

Bode plot of transfer function

Implemented circuit

Transient responses

Self-loop function

$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;$$

Nichols plot of self-loop function

2.Stability Test for Linear Non-Feedback Networks Stability Test for 2nd-Order Active Ladder LPF

Active ladder low-pass filter

Transfer function

Bode plot of transfer function

Implemented circuit

Self-loop function

Nichols plot of self-loop function

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Stability Test for Linear Non-Feedback Networks
- Alternating current conservation for passive networks
- Ringing test for passive and active RLC low-pass filters
- **3. Stability Test for Linear Feedback Networks**
- Alternating current conservation for active networks
- Ringing test for amplifiers with feedback loops
- 4. Conclusions

3. Stability Test for Linear Feedback Networks Analysis of Op Amp without Miller's Capacitor

Small signal model

Transfer function $H(\omega)$ and self-loop function $L(\omega)$

$$H(\omega) = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega$$

Where,

$$b_{0} = R_{D}R_{S} \Big[\Big(C_{GD} + C_{DB} \Big) \Big(C_{GS} + C_{GD} \Big) - C_{GD}^{2} \Big]$$

$$b_{1} = \Big[R_{D} \Big(C_{GD} + C_{DB} \Big) + R_{S} \Big(C_{GS} + C_{GD} \Big) + R_{D}R_{S}g_{m}C_{GD} \Big]$$

$$a_{0} = R_{D}C_{GD}; a_{1} = -R_{D}g_{m};$$
19

3. Stability Test for Linear Feedback Networks Unity-Gain Amplifier without Miller's Capacitor

Unity-Gain Amplifier

Transient response

Bode plot of transfer function $H(\omega)$ Magnitude of transfer function 15 12 9 Magnitude (dB) 6 3 -3 -6 -9 10 MHz 100 MHz 1 GHz 10 GHz Frequency (Hz) Nichols plot of self-loop function $L(\omega)$ Self-loop function 4

3. Stability Test for Linear Feedback Networks Two-stage Op Amp with Frequency Compensation

Small signal model

Transfer function H(ω)

$$H(\omega) = \frac{b_0 (j\omega)^3 + b_1 (j\omega)^2 + b_2 j\omega + b_3}{a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1};$$

Self-loop function $L(\omega)$

$$L(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega$$

3. Stability Test for Linear Feedback Networks Stability Test for Op Amp with Miller's Capacitor

Simulated transient response

Operating regions Under-damping: R1= 2 k Ω , C1 = 1 pF Critical damping: R1 = 3.5 k Ω , C1 = 0.2 pF Over-damping: R1 = 3.5 k Ω , C1 = 0.8 pF

3. Stability Test for Linear Feedback Networks Analysis of 2nd-order Tow-Thomas LPF

2nd-order Tow-Thomas LPF

Derivation of self-loop function

Transfer function $H(\omega)$ and self-loop function $L(\omega)$

Based on alternating current conservation principle, self-loop function

23

3. Stability Test for Linear Feedback Networks Simulation Results of 2nd-Order Tow-Thomas LPF

Transient response

Component parameters

GBW = 10MHz, Ao = 100000, fo = 25kHz, C1 =1 nF, C2 = 100 pF, R1= R4 = R5 = 1kΩ, R3 = 100 kΩ, R6 = 5 kΩ.

Under-damping: R2 = 10 k Ω , Critical damping: R2 = 3.5 k Ω , Over-damping: R2 = 10 k Ω

3. Stability Test for Linear Feedback Networks Implemented Circuit of 2nd-Order Tow-Thomas LPF

Device under test

Balun transformer (10 mH inductance)

3. Stability Test for Linear Feedback Networks Measurement Results of 2nd-order Tow-Thomas LPF

Transient response

Nichols plot of self-loop function

Over-damping: →Phase margin is 77 degrees. Critical damping: →Phase margin is 70 degrees. Under-damping: →Phase margin is 64 degrees.

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Stability Test for Linear Non-Feedback Networks
- Alternating current conservation for passive networks
- Ringing test for passive and active RLC low-pass filters
- **3. Stability Test for Linear Feedback Networks**
- Alternating current conservation for active networks
- Ringing test for amplifiers with feedback loops

4. Conclusions

4. Comparison

Features	This work	Replica measurement	Middlebrook's method	
Main objective	Self-loop function	Loop gain	Loop gain	
Transfer function accuracy	Yes	Νο	Νο	
Ringing Test	Yes	Yes	Yes	
Operating region accuracy	Yes	Νο	No	
Phase margin accuracy	Yes	No	No	
Passive networks	Yes	Νο	No	

4. Discussions

- Loop gain is independent of frequency variable.
- Doop gain in adaptive feedback network is significantly different from self-loop function in linear negative feedback network.

Nichols chart is only used in MATLAB simulation.

Nichols Chart 0 dF 30 0.25 dB 0.5 dB Open-Loop Gain (dB) 0 01 05 1 dB 3 dB -3 dB 6 dB -6 dB -12 dB -10 -20 dB -20 180 270 450 540 630 720 Open-Loop Phase (deg)

https://www.mathworks.com/help/control/ref/nichols.html

Nichols chart isn't used widely in practical measurements (only used in control theory).

4. Conclusions

This work:

- Proposal of alternating current conservation for deriving self-loop function in a transfer function
 → Observation of self-loop function can help us
 - optimize the behavior of a high-order system.
- Implementations of circuits and measurements of self-loop functions for passive & active low-pass filters
 →Theoretical concepts of stability test are verified by laboratory simulations and practical experiments.

Future of work:

• Stability test for parasitic components in transmission lines, printed circuit boards, physical layout layers

References

[1] H. Kobayashi, N. Kushita, M. Tran, K. Asami, H. San, A. Kuwana "*Analog - Mixed-Signal - RF Circuits for Complex Signal Processing*", IEEE 13th Int. Conf. ASIC, Chongqing, China, Nov. 2019.

[2] M. Tran, A. Kuwana, H. Kobayashi, "*Derivation of Loop Gain and Stability Test for Multiple Feedback Low Pass Filter Using Deboo Integrator*", 8th Int. Conf. IIAE, Shimane, Japan, March, 2020.

 [3] J. Wang, G. Adhikari, N. Tsukiji, M. Hirano, H. Kobayashi, K. Kurihara, A. Nagahama, I. Noda,
 K. Yoshii, "*Equivalence Between Nyquist and Routh-Hurwitz Stability Criteria for Operational Amplifier Design*", IEEE Int. Symp. ISPCS, Xiamen, China, Nov. 2017.

[4] M. Tran, Y. Sun, N. Oiwa, Y. Kobori, A. Kuwana, H. Kobayashi, "*Mathematical Analysis and Design of Parallel RLC Network in Step-down Switching Power Conversion System*", J. Mech. Elect. Intel. Syst. vol. 3, no. 2, May 2020.

[5] M. Tran, A. Kuwana, H. Kobayashi, "*Design of Active Inductor and Stability Test for Passive RLC Low Pass Filter*", 6th Int. Conf. SIPRO, London, UK, July, 2020.

[6] M. Tran, A. Kuwana, H. Kobayashi, "*Derivation of Loop Gain and Stability Test for Low Pass Tow-Thomas Biquad Filter*", 6th Int. Conf. SIPRO, London, UK, July, 2020.

[7] M. Tran, A. Kuwana, H. Kobayashi, "*Design of Active Inductor and Stability Test for Ladder RLC Low Pass Filter Based on Widened Superposition and Voltage Injection*", 8th IIAE Int. Conf. IAE, Shimane, Japan, March, 2020.

2020 IEEE 15th International Conference on Solid-State and Integrated Circuit Technology

Nov. 3-6, 2020

Wyndham Grand Plaza Royale Colorful Hotel, Kunming, China

Thank you very much! 谢谢

