Ringing Test for Negative Feedback Amplifiers

MinhTri Tran*, Anna Kuwana, and Haruo Kobayashi

Gunma University, Japan
Outline

1. **Research Background**
 - Motivation, objectives and achievements
 - Self-loop function in a transfer function

2. **Ringing Test for Feedback Amplifiers**
 - Stability test for shunt-shunt feedback amplifiers

3. **Ringing Test for Op Amps with Feedback Loops**
 - Stability test for unity-gain and inverting amplifiers

4. **Ringing Test for High-Order Low-Pass Filters**
 - Stability test for 2nd-order Åkerberg-Mossberg filters

5. **Conclusions**
1. Research Background
Noise in Electronic Systems

Common types of noise:
- Electronic noise
- Thermal noise,
- Intermodulation noise,
- Cross-talk,
- Impulse noise,
- Shot noise, and
- Transit-time noise.

Device noise:
- Flicker noise,
- Thermal noise,
- White noise.

Linear networks
- Overshoot,
- Ringing
- Oscillation noise

Performance of a system

\[
\text{SNR} = \frac{\text{Signal power}}{\text{Noise power}}
\]

Performance of a device

\[
F = \frac{\text{Output SNR}}{\text{Input SNR}}
\]
1. Research Background

Effects of Ringing on Electronic Systems

Ringing represents a distortion of a signal. Ringing is overshoot/undershoot voltage or current when it’s seen on time domain.

Ringing does the following things:

• Causes EMI noise,
• Increases current flow,
• Consumes the power,
• Decreases the performance, and
• Damages the devices.
1. Research Background

Objectives of Study

- Derivation of transfer function in electronic systems using superposition theorem
 - Investigation of operating regions of linear negative feedback networks
 - Over-damping (high delay in rising time)
 - Critical damping (max power propagation)
 - Under-damping (overshoot and ringing)
- Ringing test for linear negative feedback amplifiers based on comparison measurement
1. Research Background

Achievements of Study

Superposition formula for multi-source networks

\[
V_O(t)\sum_{i=1}^{n} \frac{1}{Z_i} + V_O(t)\sum_{i=1}^{n} \frac{1}{Z_{si}} + \sum_{i=1}^{n} \left(\frac{V_i(t)}{Z_i} + I_{ai}(t) - I_{gi}(t) \right) = \sum_{k=1}^{n} \frac{1}{Z_{pik}}
\]

Transfer function

\[H(\omega) = \frac{A(\omega)}{1 + L(\omega)}\]

Self-loop function

\[L(\omega) = \frac{A(\omega)}{H(\omega)} - 1\]

Derivation of self-loop function using comparison measurement

- Shunt-shunt feedback amplifiers
- Inverting amplifiers
- Unity-gain amplifiers
- 2nd-order low-pass filters
1. Research Background

Approaching Methods

Shunt-shunt feedback amplifier

\[V_{\text{in}} \rightarrow R_s \rightarrow Q_1 \rightarrow V_{\text{out}} \]

2nd-order Åkerberg-Mossberg LPF

\[\begin{align*}
C_1 & \rightarrow R_6 \\
C_2 & \rightarrow R_4 \rightarrow R_5 \\
C_1 & \rightarrow R_3 \\
C_2 & \rightarrow R_2 \rightarrow R_3 \\
V_{\text{in}} & \rightarrow A(u) \\
\text{Implemented circuit} & \rightarrow \text{input} \\
V_{\text{out}} & \rightarrow \text{output}
\end{align*} \]
1. Research Background

Superposition Theorem for Multi-Source Systems

Superposition formula:

\[
V_O(t) \sum_{i=1}^{n} \frac{1}{Z_i} + V_O(t) \sum_{i=1}^{n} \frac{1}{Z_{si}} + \sum_{k=1}^{n} \frac{1}{Z_{pik}} \\
= \sum_{i=1}^{n} \left(\frac{V_i(t)}{Z_i} + I_{ai}(t) - I_{gi}(t) \right)
\]

- \(V_O(t) \): Voltage at one node
- \(V_i(t) \): Input voltage sources
- \(I_{ai}(t) \): Ahead-toward current sources
- \(I_{gi}(t) \): Ground-toward current sources
- \(Z_{i, si, pi, k}(t) \): Impedances at each branch

- Multi-source systems, feedback networks (op amps, amplifiers), polyphase filters, complex filters...
1. Research Background

Analysis of 2nd–Order Polyphase Filter

Transfer function for \textit{positive} polyphase signal

\[H_F(\omega) = \frac{V_{out}}{V_{in}} = \frac{1 + (j)^3 b_1 j\omega}{a_0 (j\omega)^2 + a_1 j\omega + 1} \times \frac{1 + (j)^3 b_2 j\omega}{a_0 (j\omega)^2 + a_1 j\omega + 1}; \]

Transfer function for \textit{negative} polyphase signal

\[H_N(\omega) = \frac{V_{out}}{V_{in}} = \frac{1 + (j)^3 b_1 j\omega}{a_0 (j\omega)^2 + a_1 j\omega + 1} \times \frac{1 + (j)^3 b_2 j\omega}{a_0 (j\omega)^2 + a_1 j\omega + 1}; \]

Here: \[b_0 = R_1 C_1; b_1 = R_2 C_2; a_0 = b_0 b_1; a_1 = b_0 + b_1 + 2 R_2 C_1; \]

Image rejection ratio (IRR)

\[IRR(\omega) = \left| \frac{H_F(\omega)}{H_N(\omega)} \right| = \left| \frac{(1 + b_1 \omega)(1 + b_2 \omega)}{(1 - b_1 \omega)(1 - b_2 \omega)} \right|; \]
1. Research Background

Behaviors of 2nd–Order Polyphase Filter

2-order RC polyphase filter

Transfer function in all frequency domain

\[|H(\omega)| = \frac{(1 + b_1 \omega)(1 + b_2 \omega)}{\sqrt{(1 - a_0 \omega^2)^2 + (a_1 \omega)^2}}; \quad \omega \in R \]

Here, \(R_1 = 1 \, \text{k}\Omega, \, C_1 = 227 \, \text{pF}, \, R_2 = 1 \, \text{k}\Omega, \, C_2 = 114 \, \text{pF}, \) at \(f_1 = 700 \, \text{kHz}, \, f_2 = 1.4 \, \text{MHz}, \)

Bode plot of transfer function in all frequency domain

IRR = 32 dB
1. Research Background

Behavior of 4th-order Complex Filter

Transfer function for positive polyphase signals

\[
H_p(\omega) = \frac{R_{21}}{R_{11}} \left[1 + j \left(\frac{\omega}{\omega_{cut1}} + \frac{R_{21}}{R_{31}}\right)\right] \frac{R_{22}}{R_{12}} \left[1 + j \left(\frac{\omega}{\omega_{cut2}} + \frac{R_{22}}{R_{32}}\right)\right] \frac{R_{23}}{R_{13}} \left[1 + j \left(\frac{\omega}{\omega_{cut3}} + \frac{R_{23}}{R_{33}}\right)\right] \frac{R_{24}}{R_{14}} \left[1 + j \left(\frac{\omega}{\omega_{cut4}} + \frac{R_{24}}{R_{34}}\right)\right],
\]

Transfer function for negative polyphase signals

\[
H_n(\omega) = \frac{R_{21}}{R_{11}} \left[1 + j \left(\frac{\omega}{\omega_{cut1}} - \frac{R_{21}}{R_{31}}\right)\right] \frac{R_{22}}{R_{12}} \left[1 + j \left(\frac{\omega}{\omega_{cut2}} - \frac{R_{22}}{R_{32}}\right)\right] \frac{R_{23}}{R_{13}} \left[1 + j \left(\frac{\omega}{\omega_{cut3}} - \frac{R_{23}}{R_{33}}\right)\right] \frac{R_{24}}{R_{14}} \left[1 + j \left(\frac{\omega}{\omega_{cut4}} - \frac{R_{24}}{R_{34}}\right)\right],
\]

4th-order complex filter

Bode plot of transfer function

Gain Ripple = 0.7 dB

Gain = 10 dB

\(\text{BW} = 6\text{MHz}\)

IRR = 43 dB
1. Research Background

Self-loop Function in A Transfer Function

Linera system

\[H(\omega) \]

Input \(V_{in}(\omega) \) \rightarrow \ Output \(V_{out}(\omega) \)

Transfer function

\[H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)} \]

- Polar chart \(\rightarrow \) Nyquist chart
- Magnitude-frequency plot
- Angular-frequency plot

Model of a linear system

\[H(\omega) = \frac{b_0(j\omega)^n + \ldots + b_{n-1}(j\omega) + b_n}{a_0(j\omega)^n + \ldots + a_{n-1}(j\omega) + a_n} \]

- \(A(\omega) \) : Open loop function
- \(H(\omega) \) : Transfer function
- \(L(\omega) \) : Self-loop function

Variable: angular frequency \((\omega) \)

Bode plots

- Magnitude- angular diagram \(\rightarrow \) Nichols diagram
1. Research Background

Characteristics of Adaptive Feedback Network

Adaptive feedback is used to control the output source along with the decision source (DC-DC Buck converter).

Transfer function of an adaptive feedback network is significantly different from transfer function of a linear negative feedback network. → Loop gain is independent of frequency variable (referent voltage, feedback voltage, and error voltage are DC voltages).
1. Research Background
Comparison Measurement

Transfer function

\[H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{1}{1 + \frac{Z_{in}}{Z_{out}}} \]

\[\Rightarrow L(\omega) = \frac{Z_{in}}{Z_{out}} \]

Sequence of steps:
(i) Measurement of open loop function \(A(\omega) \),
(ii) Measurement of transfer function \(H(\omega) \), and
(iii) Derivation of self-loop function.

Self-loop function

\[L(\omega) = \frac{A(\omega)}{H(\omega)} - 1 \]
1. Research Background
Limitations of Conventional Methods

- **Middlebrook’s measurement of loop gain**
 → Applying only in feedback systems (**DC-DC converters**).

- **Replica measurement of loop gain**
 → Using two identical networks (**not real measurement**).

- **Nyquist’s stability condition**
 → Theoretical analysis for feedback systems (**Lab tool**).

- **Nichols chart of loop gain**
 → Only used in feedback control theory (**Lab tool**).

- **Conventional superposition**
 → Solving for every source (**several times**).
Outline

1. Research Background
 • Motivation, objectives and achievements
 • Self-loop function in a transfer function

2. Ringing Test for Feedback Amplifiers
 • Stability test for shunt-shunt feedback amplifiers

3. Ringing Test for Op Amps with Feedback Loops
 • Stability test for unity-gain and inverting amplifiers

4. Ringing Test for High-Order Low-Pass Filters
 • Stability test for 2nd-order Åkerberg-Mossberg filters

5. Conclusions
2. Ringing Test for Feedback Amplifiers

Characteristics of 2nd-order Transfer Function

Second-order transfer function:
\[H(\omega) = \frac{1}{1 + a_0 (j\omega)^2 + a_1 j\omega} \]

<table>
<thead>
<tr>
<th>Case</th>
<th>Over-damping</th>
<th>Critical damping</th>
<th>Under-damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta ((\Delta))</td>
<td>(\frac{1}{a_0} < \left(\frac{a_1}{2a_0}\right)^2 \Rightarrow \Delta = a_1^2 - 4a_0 > 0)</td>
<td>(\frac{1}{a_0} = \left(\frac{a_1}{2a_0}\right)^2 \Rightarrow \Delta = a_1^2 - 4a_0 = 0)</td>
<td>(\frac{1}{a_0} > \left(\frac{a_1}{2a_0}\right)^2 \Rightarrow \Delta = a_1^2 - 4a_0 < 0)</td>
</tr>
<tr>
<td>Module (</td>
<td>H(\omega)</td>
<td>)</td>
<td>(</td>
</tr>
<tr>
<td>Angular (\theta(\omega))</td>
<td>(-\arctan\left(\frac{\omega}{\frac{a_1}{2a_0}}\right)) (-\arctan\left(\frac{\omega}{\frac{a_1}{2a_0}}\right))</td>
<td>(-2\arctan\left(\frac{2a_0\omega}{a_1}\right))</td>
<td>(-\arctan\left(\frac{\omega - \frac{a_1}{2a_0}}{\frac{a_1}{2a_0}}\right)) (-\arctan\left(\frac{\omega + \frac{a_1}{2a_0}}{\frac{a_1}{2a_0}}\right))</td>
</tr>
<tr>
<td>(\omega_{cut} = \frac{a_1}{2a_0})</td>
<td>(</td>
<td>H(\omega_{cut})</td>
<td>< \frac{2a_0}{a_1}) (\theta(\omega_{cut}) > -\frac{\pi}{2})</td>
</tr>
</tbody>
</table>
2. Ringing Test for Feedback Amplifiers

Characteristics of 2^{nd}-order Self-loop Function

Second-order self-loop function:

$$L(\omega) = j\omega\left[a_0 j\omega + a_1\right]$$

<table>
<thead>
<tr>
<th>Case</th>
<th>Over-damping</th>
<th>Critical damping</th>
<th>Under-damping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta (Δ)</td>
<td>$\Delta = a_1^2 - 4a_0 > 0$</td>
<td>$\Delta = a_1^2 - 4a_0 = 0$</td>
<td>$\Delta = a_1^2 - 4a_0 < 0$</td>
</tr>
<tr>
<td>$</td>
<td>L(\omega)</td>
<td>$</td>
<td>$\omega\sqrt{(a_0 \omega)^2 + a_1^2}$</td>
</tr>
<tr>
<td>$\theta(\omega)$</td>
<td>$\frac{\pi}{2} + \arctan\frac{a_0 \omega}{a_1}$</td>
<td>$\frac{\pi}{2} + \arctan\frac{a_0 \omega}{a_1}$</td>
<td>$\frac{\pi}{2} + \arctan\frac{a_0 \omega}{a_1}$</td>
</tr>
<tr>
<td>$\omega_1 = \frac{a_1}{2a_0}\sqrt{5 - 2}$</td>
<td>$</td>
<td>L(\omega_1)</td>
<td>> 1, \pi - \theta(\omega_1) > 76.3^\circ$</td>
</tr>
<tr>
<td>$\omega_2 = \frac{a_1}{2a_0}$</td>
<td>$</td>
<td>L(\omega_2)</td>
<td>> \sqrt{5}, \pi - \theta(\omega_2) > 63.4^\circ$</td>
</tr>
<tr>
<td>$\omega_3 = \frac{a_1}{a_0}$</td>
<td>$</td>
<td>L(\omega_3)</td>
<td>> 4\sqrt{2}, \pi - \theta(\omega_3) > 45^\circ$</td>
</tr>
</tbody>
</table>
2. Ringing Test for Feedback Amplifiers
Operating Regions of 2nd-Order System

- **Under-damping:**
 \[L_1(\omega) = (j\omega)^2 + j\omega; \]
 \[H_1(\omega) = \frac{1}{(j\omega)^2 + j\omega + 1}; \]

- **Critical damping:**
 \[L_2(\omega) = (j\omega)^2 + 2j\omega; \]
 \[H_2(\omega) = \frac{1}{(j\omega)^2 + 2j\omega + 1}; \]

- **Over-damping:**
 \[L_3(\omega) = (j\omega)^2 + 3j\omega; \]
 \[H_3(\omega) = \frac{1}{(j\omega)^2 + 3j\omega + 1}; \]

Nichols plot of self-loop function

Bode plot of transfer function

Transient response

- Phase margin:
 - Under-damping: 92°
 - Critical damping: 76.3°
 - Over-damping: 52°
2. Ringing Test for Feedback Amplifiers

Analysis of Shunt-Shunt Feedback Amplifier

BJT shunt-shunt feedback amplifier

Small signal model

Apply superposition at the nodes V_π and V_{out}, we have

$$V_\pi \left(\frac{1}{R_s} + \frac{1}{r_\pi} + \frac{1}{Z_{C\pi}} + \frac{1}{R_F} + \frac{1}{Z_{C\mu}} \right) = \frac{V_{\text{in}}}{R_s} + \frac{V_{\text{out}}}{Z_{C\mu}}; \quad V_{\text{out}} \left(\frac{1}{Z_{C\mu}} + \frac{1}{Z_{CCS}} + \frac{1}{R_C} + \frac{1}{r_o} \right) = V_\pi \left(\frac{1}{Z_{C\mu}} + \frac{1}{R_F} - g_m \right);$$

Transfer function $H(\omega)$ and self-loop function $L(\omega)$

$$H(\omega) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1}; \quad L(\omega) = j\omega [a_0 j\omega + a_1]$$

Where,

\[b_0 = R_L C_{GD1}; \quad b_1 = -R_L g_m; \quad a_0 = R_S R_L \left(C_{GD1} C_{GS1} + C_{GD1} C_{DB1} + C_{DB1} C_{GS1} \right) \]

\[a_1 = R_L \left(C_{GD1} + C_{DB1} \right) + R_S \left(C_{GS1} + C_{GD1} \right) + R_S R_L g_m C_{GD1}; \]
2. Ringing Test for Feedback Amplifiers

Characteristics of Shunt-Shunt Feedback Amplifier

BJT shunt-shunt feedback amplifier

\[R_f = 1 \text{k}\Omega, \quad R_C = 10 \text{k}\Omega, \quad R_S = 950 \text{\Omega}. \]

Transients response

Bode plot of transfer function

- Magnitude of transfer function
 - 17 dB

Nichols plot of self-loop function

- Phase margin
 - 94°
 - 86 degrees
Outline

1. Research Background
 • Motivation, objectives and achievements
 • Self-loop function in a transfer function

2. Ringing Test for Feedback Amplifiers
 • Stability test for shunt-shunt feedback amplifiers

3. Ringing Test for Op Amps with Feedback Loops
 • Stability test for unity-gain and inverting amplifiers

4. Ringing Test for High-Order Low-Pass Filters
 • Stability test for 2nd-order Åkerberg-Mossberg filters

5. Conclusions
3. Ringing Test for Op Amps with Feedback Loops

Analysis of Op Amp without Miller’s Capacitor

Without frequency compensation

Simplified model

Small signal model

Transfer function $H(\omega)$ and **self-loop function** $L(\omega)$

\[
H(\omega) = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1};
\]

\[
L(\omega) = a_0 (j\omega)^2 + a_1 j\omega
\]

Where,

\[
b_0 = R_D R_S \left[(C_{GD} + C_{DB})(C_{GS} + C_{GD}) - C_{GD}^2 \right]
\]

\[
b_1 = R_D (C_{GD} + C_{DB}) + R_S (C_{GS} + C_{GD}) + R_D R_S g_m C_{GD}
\]

\[
a_0 = R_D C_{GD}; \quad a_1 = -R_D g_m
\]
3. Ringing Test for Op Amps with Feedback Loops

Unity-Gain Amplifier without Miller’s Capacitor

Unity-Gain Amplifier

Bode plot of transfer function $H(\omega)$

Nichols plot of self-loop function $L(\omega)$

Phase margin $= 13$ degrees

15 dB
3. Ringing Test for Op Amps with Feedback Loops

Two-stage Op Amp with Frequency Compensation

With Miller’s capacitor and resistor

Simplified model

Small signal model

Transfer function $H(\omega)$

$$H(\omega) = \frac{b_0 (j\omega)^3 + b_1 (j\omega)^2 + b_2 j\omega + b_3}{a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1};$$

Self-loop function $L(\omega)$

$$L(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega$$
3. Ringing Test for Op Amps with Feedback Loops

Unity-Gain Amplifier with Miller’s Capacitor

Unity-gain amplifier with Miller’s capacitor

Simplified model of unity gain amplifier

Transfer function and self-loop function

\[H(\omega) = \frac{1}{1 + \frac{1}{A(\omega)}} \approx 1; \quad L(\omega) = \frac{1}{A(\omega)}; \]

Under-damping:
\[R1 = 2\, \text{k}\Omega, \quad C1 = 1\, \text{pF} \]

Critical damping:
\[R1 = 3.5\, \text{k}\Omega, \quad C1 = 0.2\, \text{pF} \]

Over-damping:
\[R1 = 3.5\, \text{k}\Omega, \quad C1 = 0.8\, \text{pF} \]
3. Ringing Test for Op Amps with Feedback Loops
Behaviors of Unity-Gain Amplifier

Simplified model of unity gain amplifier

Simulated transient response

Bode plot of transfer function

Nichols plot of self-loop function

- Phase margin
 - 30 degrees

- 5dB

- 79°
- 90°
- 150°
Inverting Amplifier with Frequency Compensation

3. Ringing Test for Op Amps with Feedback Loops

Inverting Amplifier with Miller’s Capacitor

Under-damping:
R3 = 2 kΩ, C1 = 1 pF

Critical damping:
R3 = 3.5 kΩ, C1 = 0.2 pF

Over-damping:
R3 = 3.5 kΩ, C1 = 0.8 pF

Transfer function and self-loop function

\(H(\omega) = \frac{-R_2}{1 + L(\omega)} \approx -\frac{R_2}{R_1} \);

\(L(\omega) = \frac{1}{A(\omega)} \left(1 + \frac{R_2}{R_1} \right) \);
3. Ringing Test for Op Amps with Feedback Loops

Behaviors of Inverting Amplifier

Simplified model of **inverting amplifier**

Bode plot of transfer function

Nichols plot of self-loop function

Simulated transient response

- **Phase margin 41 degrees**
Outline

1. Research Background
 • Motivation, objectives and achievements
 • Self-loop function in a transfer function

2. Ringing Test for Feedback Amplifiers
 • Stability test for shunt-shunt feedback amplifiers

3. Ringing Test for Op Amps with Feedback Loops
 • Stability test for unity-gain and inverting amplifiers

4. Ringing Test for High-Order Low-Pass Filters
 • Stability test for 2
 nd-order Åkerberg-Mossberg filters

5. Conclusions
4. Ringing Test for High-Order Low-Pass Filters

Analysis of 2nd-Order Åkerberg-Mossberg LPF

Single ended Åkerberg-Mossberg LPF

Transfer function & self-loop function

\[H(\omega) = -\frac{b_0}{a_0 (j\omega)^2 + a_1 j\omega + 1}; \]
\[L(\omega) = a_0 (j\omega)^2 + a_1 j\omega; \]
where, \(b_0 = \frac{R_6}{R_1}; \)

\[a_0 = \frac{R_3}{R_4} R_5 R_6 C_1 C_2; \]
\[a_1 = \frac{R_3 R_5 R_6}{R_4 R_2} C_2; \]

R1 = 100 Ω, R2 = 50 kΩ,
R3 = R4 = 50 kΩ, C1 = 5 nF, C2 = 10 nF, C3 = 3.18 nF, at \(f_0 = 100 \text{ kHz}. \)

- Over-damping (R5 = 0.5 kΩ),
- Critical damping (R5 = 1 kΩ), and
- Under-damping (R5 = 2 kΩ).

Fully differential Åkerberg-Mossberg LPF
4. Ringing Test for High-Order Low-Pass Filters

Simulation Results of 2nd-Order Ladder LPF

Bode plot of transfer function

- Under-damping
- Critical damping
- Over-damping

Transient response

- Under-damping
- Critical damping
- Over-damping

Nichols plot of self-loop function

- Under-damping
- Critical damping
- Over-damping

Over-damping:

\rightarrow Phase margin is 81 degrees.

Critical damping:

\rightarrow Phase margin is 71 degrees.

Under-damping:

\rightarrow Phase margin is 45 degrees.
4. Ringing Test for High-Order Low-Pass Filters

Implemented Circuit of Åkerberg-Mossberg LPF

Schematic of Åkerberg-Mossberg LPF

Measurement set up

Device Under Test

Signal generator

Buffer

Device Under Test

Buffer

Oscilloscope

Analog Discovery II
Digilent (1 kHz ~ 10 kHz)
4. Ringing Test for High-Order Low-Pass Filters
Measurement Results of Åkerberg-Mossberg LPF

Bode plot of transfer function

- Under-damping
- Critically-damping
- Under-damping

- Frequency (Hz)
- Magnitude (dB)
- 1 kHz, 10 kHz, 100 kHz, 1 MHz
- 0 dB, 12 dB, 20 dB

Nichols plot of self-loop function

- Under-damping
- Critical damping
- Over-damping

- Phase (deg)
- Magnitude (dB)
- 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140

- Phase margin
 - 103°, 110°, 116°
 - 64 degrees

Transient response

- Under-damping
- Critical damping
- Over-damping

- Time (s)
- Amplitude (V)
- 0 ms, 0.5 ms, 1 ms, 1.5 ms, 2 ms, 2.5 ms, 3 ms, 3.5 ms

Over-damping:

→ Phase margin is 77 degrees.

Critical damping:

→ Phase margin is 70 degrees.

Under-damping:

→ Phase margin is 64 degrees.
Outline

1. Research Background
 • Motivation, objectives and achievements
 • Self-loop function in a transfer function

2. Ringing Test for Feedback Amplifiers
 • Stability test for shunt-shunt feedback amplifiers

3. Ringing Test for Op Amps with Feedback Loops
 • Stability test for unity-gain and inverting amplifiers

4. Ringing Test for High-Order Low-Pass Filters
 • Stability test for 2nd-order Åkerberg-Mossberg filters

5. Conclusions
5. Comparison

<table>
<thead>
<tr>
<th>Features</th>
<th>Comparison measurement</th>
<th>Replica measurement</th>
<th>Middlebrook’s method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main objective</td>
<td>Self-loop function</td>
<td>Loop gain</td>
<td>Loop gain</td>
</tr>
<tr>
<td>Transfer function</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breaking feedback loop</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Operating region</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase margin</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive networks</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
5. Discussions

- Loop gain is independent of frequency variable.

Loop gain in adaptive feedback network is significantly different from self-loop function in linear negative feedback network.

Nichols chart is only used in MATLAB simulation.

Nichols chart isn’t used widely in practical measurements (only used in control theory).

https://www.mathworks.com/help/control/ref/nichols.html

(Network Analyzer)

(Technology limitations)
5. Conclusions

This work:

• Proposal of **comparison measurement** for deriving **self-loop function** in a transfer function
 → **Observation** of **self-loop function** can help us **optimize the behavior** of a high-order system.

• Implementation of circuit and **measurements** of self-loop functions for high-order feedback amplifiers.
 → **Theoretical concepts** of **stability test** are verified by laboratory simulations and practical experiments.

Future of work:

• **Stability test** for **parasitic components** in transmission lines, printed circuit boards, physical layout layers
References

Thank you very much!