Virtual TJCAS 2020 Taiwan and Japan Conference on Circuits and Systems

STABILITY TEST FOR HIGH-ORDER LADDER LOW-PASS FILTERS

MinhTri Tran^{*}, Anna Kuwana, and Haruo Kobayashi

> Gunma University, Japan (Nov. 7th, 2020)

Outline

1. Research Background

- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Ringing Test for Passive Networks
- Stability test for RLC low-pass filters
- **3. Ringing Test for Ladder Low-Pass Filters**
- Stability test for active high-order ladder lowpass filters
- 4. Conclusions

1. Research Background

Noise in Electronic Systems

Performance of a system

Signal to Noise Ratio:

Common types of noise:

- Electronic noise
- Thermal noise,
- Intermodulation noise,
- Cross-talk,
- Impulse noise,
- Shot noise, and
- Transit-time noise.

Performance of a device

 $\mathbf{F} = \frac{\mathbf{Output \ SNR}}{\mathbf{Input \ SNR}}$

Device noise:

- Flicker noise,
- Thermal noise,
- White noise.

Linear networks

- Overshoot,
- Ringing

1. Research Background

Effects of Ringing on Electronic Systems

Ringing represents a distortion of a signal. Ringing is overshoot/undershoot voltage or current when it's seen on time domain.

Ringing does the following things:

- Causes EMI noise,
- Increases current flow,
- Consumes the power,
- Decreases the performance, and
- Damages the devices.

1. Research Background Objectives of Study

- Derivation of transfer function in electronic systems using superposition theorem
- Investigation of operating regions of linear negative feedback networks
- Over-damping (high delay in rising time)
- Critical damping (max power propagation)
- → Under-damping (overshoot and ringing)
- Stability test for electronic networks based on alternating current conservation

1. Research Background Achievements of Study

Superposition formula for multi-source networks

Self-loop function

Alternating current conservation

10 mH

inductance

1. Research Background

Approaching Methods

3rd-order ladder LPF

Derivation of self-loop function

Balun transformer

Implemented circuit

1. Research Background Self-loop Function in A Transfer Function

Linear system

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

○Polar chart → Nyquist chart
 ○Magnitude-frequency plot
 ○Angular-frequency plot
 ○Magnitude-angular diagram → Nichols diagram

Model of a linear system

$$H(\boldsymbol{\omega}) = \frac{b_0(j\omega)^n + \dots + b_{n-1}(j\omega) + b_n}{a_0(j\omega)^n + \dots + a_{n-1}(j\omega) + a_n}$$

 $A(\omega)$: Open loop function $H(\omega)$: Transfer function $L(\omega)$: Self-loop function Variable: angular frequency (ω)

1. Research Background

Characteristics of Adaptive Feedback Network

Adaptive feedback is used to control the output source along with the decision source (DC-DC Buck converter).
 Transfer function of an adaptive feedback network is significantly different from transfer function of a linear negative feedback network.

→ Loop gain is independent of frequency variable (referent voltage, feedback voltage, and error voltage are DC voltages).

1. Research Background Alternating Current Conservation

Transfer function

Simplified linear system

Self-loop function

10 mH inductance

Derivation of self-loop function

1. Research Background Limitations of Conventional Methods

- Middlebrook's measurement of loop gain
- →Applying only in feedback systems (DC-DC converters).
- Replica measurement of loop gain
- →Using two identical networks (not real measurement).
- Nyquist's stability condition
- \rightarrow Theoretical analysis for feedback systems (Lab tool).
- Nichols chart of loop gain
- \rightarrow Only used in feedback control theory (Lab tool).
- Conventional superposition
- \rightarrow Solving for every source (several times).

Outline

- **1. Research Background**
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Ringing Test for Passive Networks
- Stability test for RLC low-pass filters
- **3. Ringing Test for Ladder Low-Pass Filters**
- Stability test for active high-order ladder lowpass filters
- 4. Conclusions

2. Ringing Test for Passive Networks Characteristics of 2nd-order Transfer Function

Second-order transfer function: $H(\omega) = \frac{1}{1 + a_0(j\omega)^2 + a_1j\omega}$

Case	Over-damping	Critical damping	Under-damping	
Delta (Δ)	$\frac{1}{a_0} < \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 > 0$	$\frac{1}{a_0} = \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 = 0$	$\frac{1}{a_0} > \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 < 0$	
$\begin{array}{c} \textbf{Module} \\ H(\omega) \end{array}$	$\frac{\frac{1}{a_0}}{\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}$	$\frac{\frac{1}{a_0}}{\left[\omega^2 + \left(\frac{a_1}{2a_0}\right)^2\right]} = \frac{1}{2} = -6dB$	$\boxed{\frac{\frac{1}{a_{0}}}{\sqrt{\left(\omega - \sqrt{\frac{1}{a_{0}} - \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\right)^{2} + \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\sqrt{\left(\omega + \sqrt{\frac{1}{a_{0}} - \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\right)^{2} + \left(\frac{a_{1}}{2a_{0}}\right)^{2}}}$	
Angular $\theta(\omega)$	$-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}-\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}+\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}\right)$	$-2 \arctan\left(\frac{2a_0\omega}{a_1}\right)$	$-\arctan\left(\frac{\omega-\sqrt{\frac{1}{a_0}-\left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)-\arctan\left(\frac{\omega+\sqrt{\frac{1}{a_0}-\left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)$	
$\omega_{cut} = \frac{a_1}{2a_0}$	$\left H(\omega_{cut}) < \frac{2a_0}{a_1} \right \Theta(\omega_{cut}) > -\frac{\pi}{2}$	$ H(\omega_{cut}) = \frac{2a_0}{a_1} \theta(\omega_{cut}) = -\frac{\pi}{2}$	$\left H(\omega_{cut}) \right > \frac{2a_0}{a_1} \qquad \Theta(\omega_{cut}) < -\frac{\pi}{2}$	

2. Ringing Test for Passive Networks Characteristics of 2nd-order Self-loop Function

Second-order self-loop function: $L(\omega) = j\omega [a_0 j\omega + a_1]$

Case	Over-damping		Critical damping		Under-damping	
Delta (Δ)	$\Delta = a_1^2 - 4a_0 > 0$		$\Delta = a_1^2 - 4a_0 = 0$		$\Delta = a_1^2 - 4a_0 < 0$	
$ L(\omega) $	$\omega \sqrt{a_0}$	$(\omega)^2 + a_1^2$	$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$	
θ(ω)	$\frac{\pi}{2}$ +	$\arctan \frac{a_0 \omega}{a_1}$	$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$		$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$	
$\omega_1 = \frac{a_1}{2a_0}\sqrt{\sqrt{5}-2}$	$\left \left L(\omega_1) \right > 1 \right $	$\pi - \theta(\omega_1) > 76.3^{\circ}$	$ L(\omega_1) = 1$	$\pi - \theta(\omega_1) = 76.3^{\circ}$	$\left L(\omega_1)\right < 1$	$\pi - \theta(\omega_1) < 76.3^{\circ}$
$\omega_2 = \frac{a_1}{2a_0}$	$ L(\omega_2) > \sqrt{5}$	$\pi - \theta(\omega_2) > 63.4^{\circ}$	$\left L(\omega_2)\right = \sqrt{5}$	$\pi - \Theta(\omega_2) = 63.4^{\circ}$	$ L(\omega_2) < \sqrt{5}$	$\pi - \theta(\omega_2) < 63.4^{\circ}$
$\omega_3 = \frac{a_1}{a_0}$	$ L(\omega_3) > 4\sqrt{2}$	$\pi - \theta(\omega_3) > 45^{\circ}$	$ L(\omega_3) = 4\sqrt{2}$	$\pi - \theta(\omega_3) = 45^\circ$	$\left L(\omega_3)\right < 4\sqrt{2}$	$\pi - \theta(\omega_3) < 45^{\circ}$

2. Ringing Test for Passive Networks **Operating Regions of 2nd-Order System**

- •Under-damping: $H_1(\omega) = \frac{1}{(j\omega)^2 + j\omega};$ $H_1(\omega) = \frac{1}{(j\omega)^2 + j\omega + 1};$
- - $L_2(\omega) = (j\omega)^2 + 2j\omega;$
- - $L_3(\omega) = (j\omega)^2 + 3j\omega;$

•Critical damping: $H_2(\omega) = \frac{1}{(j\omega)^2 + 2j\omega + 1}; \quad \bigoplus_{j=1,2}^{2.5}$ •Over-damping: $H_3(\omega) = \frac{1}{(j\omega)^2 + 3j\omega + 1};$

Transient response

Bode plot of transfer function

Nichols plot of self-loop function

2. Ringing Test for Passive Networks Stability Test for Passive 2rd-Order RLC LPF

Passive RLC Low-pass Filter

Derivation of self-loop function

Transfer function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

Self-loop function

 $L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;$

where, $a_0 = LC; a_1 = RC;$

Implemented circuit

2. Ringing Test for Passive Networks Stability Test for 2rd-Order Passive RLC LPF

Bode plot of transfer function

Nichols plot of self-loop function

Over-damping 1.0 0.5 Amplitude (V) 0.0 -0.5 -1.0 -0.0003 -0.0002 0.0001 -0.0001 0.0000 0.0002 0.0003 Time (s) Critical damping 1.0 Amplitude (V) 0.5 0.0 -0.5 -1.0 -0.0003 -0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 Time (s) Under-damping 1.0 Amplitude (V) 0.5 0.0 -0.5 -1.0 -0.0003 -0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 Time (s)

Transient responses

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Ringing Test for Passive Networks
- Stability test for RLC low-pass filters
- **3. Ringing Test for Ladder Low-Pass Filters**
- Stability test for active high-order ladder lowpass filters
- 4. Conclusions

3. Ringing Test for Ladder Low-Pass Filters Analysis of Active 3rd-Order Ladder LPF

18

3. Ringing Test for Ladder Low-Pass Filters Simulation Results of 3nd-Order Ladder LPF

- Critical damping - Under-damping Over-damping 6 4 **Phase margin** Magnitude (dB) 2 **36** degrees 100° 0 -2 107° 144° -4 -6 -8 90 95 105 115 120 125 130 100 110 135 Phase (deg)

Transient response

Over-damping: → Phase margin is 80 degrees. Critical damping: → Phase margin is 73 degrees. Under-damping: → Phase margin is 36 degrees.

3. Ringing Test for Ladder Low-Pass Filters Implemented Circuit of 3rd-Order Ladder LPF

⁷ Device under test

3. Ringing Test for Ladder Low-Pass Filters Measurement Results of 3nd-order Ladder LPF

Bode plot of transfer function Over-damping ____ Critical damping ____ Under-damping 5 1 dB 0 Magnitude (dB) -3dB -5 -10 -6 dB -15 -20 -25 100 kHz 300 kHz 5 kHz 10 kHz Frequency (Hz)

Transient response

Nichols plot of self-loop function

Over-damping: →Phase margin is 77 degrees. Critical damping: →Phase margin is 70 degrees. Under-damping: →Phase margin is 64 degrees.

Outline

- **1. Research Background**
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Ringing Test for Passive Networks
- Stability test for RLC low-pass filters
- **3. Ringing Test for Ladder Low-Pass Filters**
- Stability test for active high-order ladder lowpass filters

4. Conclusions

4. Comparison (Self-loop function)

Features	Alternating current conservation	Replica measurement	Middlebrook's method	
Main objective	Self-loop function	Loop gain	Loop gain	
Transfer function accuracy	Yes	Νο	Νο	
Ringing Test	Yes	Yes	Yes	
Operating region accuracy	Yes	Νο	Νο	
Phase margin accuracy	Yes	Νο	No	
Passive networks	Yes	Νο	Νο	

4. Discussions (Self-loop function)

- Loop gain is independent of frequency variable.
- →Loop gain in adaptive feedback network is significantly different from self-loop function in linear negative feedback network.

Nichols chart is only used in MATLAB simulation.

Nichols Chart 30 0.25 dB 0.5 dB Open-Loop Gain (dB) 0 01 05 1 dB 3 dB -3 dB 6 dB -6 dB -12 dB -10 -20 dB -20 180 270 450 540 630 720 Open-Loop Phase (deg)

https://www.mathworks.com/help/control/ref/nichols.html

Nichols chart isn't used widely in practical measurements (only used in control theory).

4. Conclusions

This work:

- Proposal of alternating current conservation for deriving self-loop function in a transfer function
 → Observation of self-loop function can help us
 - optimize the behavior of a high-order system.
- Implementations of circuits and measurements of self-loop functions for passive & active low-pass filters
 →Theoretical concepts of stability test are verified by laboratory simulations and practical experiments.

Future of work:

• Stability test for parasitic components in transmission lines, printed circuit boards, physical layout layers

References

- [1] H. Kobayashi, N. Kushita, M. Tran, K. Asami, H. San, A. Kuwana "Analog Mixed-Signal RF Circuits for Complex Signal Processing", 13th IEEE Int. Conf. ASIC, Chongqing, China, Nov, 2019.
- [2] M. Liu, I. Dassios, F. Milano, "*On the Stability Analysis of Systems of Neutral Delay Differential Equations*", Circuits, Systems, and Signal Processing, Vol. 38(4), 1639-1653, 2019.
- [3] X. Peng, H. Yang, "Impedance-based stability criterion for the stability evaluation of grid-connected inverter systems with distributed parameter lines", CSEE J. Power and Energy Systems, pp 1-13, 2020.
- [4] N. Kumar, V. Mummadi, "*Stability Region Based Robust Controller Design for High-gain Boost DC-DC Converter*", IEEE Trans. Industrial Electronics, Feb. 2020.
- [5] H. Abdollahi, A. Khodamoradi, E. Santi, P. Mattavelli, "Online Bus Impedance Estimation and Stabilization of DC Power Distribution Systems: A Method Based on Source Converter Loop-Gain Measurement", 2020 IEEE Applied Power Electronics Conference and Exposition, LA, USA, June 2020.
- [6] L. Fan, Z. Miao, "Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or Eigenvalue Analysis", IEEE Trans. Power Systems, Vol. 35, Issue 4, July 2020.
- [7] P. Wang, S. Feng, P. Liu, N. Jiang, X. Zhang, "Nyquist stability analysis and capacitance selection method of DC current flow controllers for meshed multi-terminal HVDC grids", CSEE J. Power and Energy Syst., pp. 1-13, 2020.
- [8] N. Tsukiji, Y. Kobori, H. Kobayashi, "A Study on Loop Gain Measurement Method Using Output Impedance in DC-DC Buck Converter", IEICE Trans. Com., Vol. E101-B(9), pp.1940-1948, 2018.
- [9] J. Wang, G. Adhikari, N. Tsukiji, H. Kobayashi, "Analysis and Design of Operational Amplifier Stability Based on Routh-Hurwitz Stability Criterion", IEEJ Trans. Electronics, Information and Systems, Vol. 138(128), pp.1517-1528, Dec. 2018.
- [10] M. Tran, "Damped Oscillation Noise Test for Feedback Circuit Based on Comparison Measurement Technique", 73rd System LSI Joint Seminar, Tokyo, Japan, Oct. 2019.

Virtual TJCAS 2020 Taiwan and Japan Conference on Circuits and Systems

Thank you very much!

