Virtual TJCAS 2020 Taiwan and Japan Conference on Circuits and Systems

DERIVATION OF IMAGE REJECTION RATIO FOR HIGH-ORDER COMPLEX FILTERS

MinhTri Tran^{*}, Anna Kuwana, and Haruo Kobayashi

Gunma University, Japan (Nov. 7th, 2020)

Outline

1. Research Background

- Motivation, objectives and achievements
- Superposition formula for multi-source networks
- **2. Behaviors of High-Order Polyphase Filters**
- Derivation of image rejection ratio for polyphase filters
- **3. Behaviors of High-Order Complex Filters**
- Derivation of image rejection ratio for complex filters
- 4. Conclusions

1. Research Background Motivation of Study

Performance of a system

Signal to Noise Ratio:

Common types of noise:

- Electronic noise
- Thermal noise,
- Intermodulation noise,
- Cross-talk,
- Impulse noise,
- Shot noise, and
- Transit-time noise.

Performance of a device

 $\mathbf{F} = \frac{\mathbf{Output \ SNR}}{\mathbf{Input \ SNR}}$

Device noise:

- Flicker noise,
- Thermal noise,
- White noise.

Multi-phase networks

- Image noise,
- I/Q mismatches
- DC offsets

1. Research Background Objectives of Study

- Derivation of transfer function in multisource systems using superposition theorem
- Investigation of behaviors of high-order passive RC polyphase filter networks
- Investigation of behaviors of high-order complex filter networks
- Derivation of image rejection ratio in low-IF receivers

1. Research Background

Achievements of Study

Superposition formula for multisource networks

2nd-order polyphase filter

Image rejection ratio

$$IRR(\omega) = \frac{|(1+b_1\omega)(1+b_2\omega)|}{|(1-b_1\omega)(1-b_2\omega)|};$$

 $IRR(\omega) = \frac{\left[j\left(\frac{\omega}{\omega_{cut1}} + \frac{R_{21}}{R_{31}}\right) + 1\right]}{\left[j\left(\frac{\omega}{\omega_{cut2}} + \frac{R_{22}}{R_{32}}\right) + 1\right]} \left[j\left(\frac{\omega}{\omega_{cut3}} + \frac{R_{23}}{R_{33}}\right) + 1\right]} \left[j\left(\frac{\omega}{\omega_{cut4}} + \frac{R_{24}}{R_{34}}\right) + 1\right]}{\left[j\left(\frac{\omega}{\omega_{cut1}} - \frac{R_{21}}{R_{31}}\right) + 1\right]} \left[j\left(\frac{\omega}{\omega_{cut2}} - \frac{R_{22}}{R_{32}}\right) + 1\right]} \left[j\left(\frac{\omega}{\omega_{cut3}} - \frac{R_{23}}{R_{33}}\right) + 1\right]} \left[j\left(\frac{\omega}{\omega_{cut4}} - \frac{R_{24}}{R_{34}}\right) + 1\right]}\right]$

1. Research Background

Low-IF Receiver System Architecture

Applications: Wi-Fi, WiMax, UWB, GSM, WCDMA, LTE , 4G, Cordless Phones, RFID, ZigBee, Bluetooth, TV Set Top Box, Sensing, Radar...

Merits

- Low-cost
- Small-size
- High-integration

Demerits

- Image Noises
- Power Loss
- Noise Figure

1. Research Background Characteristics of Low-IF Receiver Signals

1. Research Background Positive Polyphase Signals on Frequency Domain

(e) Positive angular frequency wave

(f) Spectrum of positive angular frequency wave

1. Research Background Negative Polyphase Signals on Frequency Domain

8

1. Research Background Polyphase Signals on Frequency Domain

Negative polyphase signals

Positive polyphase signals

1. Research Background

Superposition Theorem for Multi-Source Systems

Superposition formula:

- V_o(t) : Voltage at one node
- V_i(t) : Input voltage sources
- I_{ai}(t) : Ahead-toward current sources
- I_{gi}(t) : Ground-toward current sources
- Z_{i, si, pi}(t): Impedances at each branch

Multi-source systems, feedback
networks (op amps, amplifiers),
polyphase filters, complex filters...

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Superposition formula for multi-source networks
- **2. Behaviors of High-Order Polyphase Filters**
- Derivation of image rejection ratio for polyphase filters
- **3. Behaviors of High-Order Complex Filters**
- Derivation of image rejection ratio for complex filters
- 4. Conclusions

2. Investigation of Multi-Phase Networks Design Principle for Polyphase Filter Networks

Complementation between low-pass and high-pass circuits → a passive polyphase filter

Wanted Signals

Image Signals

Complementary high-pass (d) Notch-band filter (image signal)

2. Investigation of Multi-Phase Networks Analysis of 2nd–Order Polyphase Filter

Apply superposition at each node

$$\begin{split} V_{out} \left(\frac{1}{Z_{C1}} + \frac{1}{R_1} \right) &= \frac{V_a}{R_1} + \frac{\left(+j\right)^3 V_a}{Z_{C1}}; \\ V_a \left(\frac{1}{Z_{C2}} + \frac{1}{R_2} + \frac{2}{R_1 + Z_{C1}} \right) &= \frac{V_{in}}{R_2} + \frac{\left(+j\right)^3 V_{in}}{Z_{C2}}; \end{split}$$

Transfer function for **positive** polyphase signal

$$H_{P}(\omega) = \frac{V_{out}}{V_{in}} = \frac{\left[1 + (+j)^{3} b_{1} j\omega\right] \left[1 + (+j)^{3} b_{2} j\omega\right]}{a_{0} (j\omega)^{2} + a_{1} j\omega + 1}$$

Transfer function for negative polyphase signal

$$H_{N}(\omega) = \frac{V_{out}}{V_{in}} = \frac{\left[1 + (-j)^{3} b_{1} j\omega\right] \left[1 + (-j)^{3} b_{2} j\omega\right]}{a_{0} (j\omega)^{2} + a_{1} j\omega + 1};$$

Here:
$$b_0 = R_1 C_1; b_1 = R_2 C_2; a_0 = b_0 b_1; a_1 = b_0 + b_1 + 2R_2 C_1;$$

Image rejection ratio (IRR)

$$IRR(\omega) = \frac{\left|H_{P}(\omega)\right|}{\left|H_{N}(\omega)\right|} = \frac{\left|(1+b_{1}\omega)(1+b_{2}\omega)\right|}{\left|(1-b_{1}\omega)(1-b_{2}\omega)\right|};$$

2. Investigation of Multi-Phase Networks Behaviors of 2nd–Order Polyphase Filter

Transfer function in all frequency domain

$$\left|H\left(\omega\right)\right| = \frac{\left(1+b_{1}\omega\right)\left(1+b_{2}\omega\right)}{\sqrt{\left(1-a_{0}\omega^{2}\right)^{2}+\left(a_{1}\omega\right)^{2}}}; \omega \in R$$

Here, R1 = 1 k Ω , C1 = 227 pF, R2 = 1 k Ω , C2 = 114 pF, at f₁ = 700 kHz, f₂ = 1.4 MHz,

Bode plot of transfer function in all frequency domain

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Superposition formula for multi-source networks
- 2. Behaviors of High-Order Polyphase Filters
- Derivation of image rejection ratio for polyphase filters
- **3. Behaviors of High-Order Complex Filters**
- Derivation of image rejection ratio for complex filters
- 4. Conclusions

3. Behaviors of High-Order Complex Filters Design Principle for Complex Filter Networks

Frequency shifting of real low-pass filter in all frequency domains → an active complex filter

 ω_{cr} : cross angular frequency

3. Behaviors of High-Order Complex Filters Behavior of 2th-order Complex Filter

Apply superposition at each node

$$V_{a}\left(\frac{1}{Z_{C1}} + \frac{1}{R_{21}}\right) = \frac{V_{in}}{R_{11}} + \frac{(+j)^{3}V_{b}}{R_{31}} + V_{b}\left(\frac{1}{Z_{C1}} + \frac{1}{R_{21}}\right);$$

$$V_{C}\left(\frac{1}{Z_{C2}} + \frac{1}{R_{22}}\right) = \frac{V_{b}}{R_{12}} + \frac{(+j)^{3}V_{out}}{R_{32}} + V_{out}\left(\frac{1}{Z_{C2}} + \frac{1}{R_{22}}\right);$$

$$V_{b} = \left[V_{a} - (+j)^{2}V_{a}\right]A(\omega); V_{out} = \left[V_{c} - (+j)^{2}V_{c}\right]A(\omega);$$

Transfer function for positive polyphase signals

$$H_{P}(\omega) = \frac{V_{out}}{V_{in}} = \frac{\frac{R_{21}}{R_{11}}}{\left[1 + j\left(\frac{\omega}{\omega_{cut1}} - \frac{R_{21}}{R_{31}}\right)\right]} \frac{\frac{R_{22}}{R_{12}}}{\left[1 + j\left(\frac{\omega}{\omega_{cut2}} - \frac{R_{22}}{R_{32}}\right)\right]};$$

Transfer function for negative polyphase signals

$$H_{N}(\omega) = \frac{V_{out}}{V_{in}} = \frac{\frac{R_{21}}{R_{11}}}{\left[j\left(\frac{\omega}{\omega_{cut1}} + \frac{R_{21}}{R_{31}}\right) + 1\right]} \frac{\frac{R_{22}}{R_{12}}}{\left[j\left(\frac{\omega}{\omega_{cut2}} + \frac{R_{22}}{R_{32}}\right) + 1\right]}$$
17

Here, cut-off angular frequencies:

$$\omega_{cut1} = \frac{1}{R_{21}C_1}; \omega_{cut2} = \frac{1}{R_{22}C_2};$$

3. Behaviors of High-Order Complex Filters Behavior of 2th-order Complex Filter

2nd-order complex filter

Image rejection ratio (IRR)

$$IRR(\omega) = \frac{H_{Pos}(\omega)}{H_{Neg}(\omega)} = \frac{\left[j\left(\frac{\omega}{\omega_{cut1}} + \frac{R_{21}}{R_{31}}\right) + 1\right]}{\left[j\left(\frac{\omega}{\omega_{cut2}} + \frac{R_{22}}{R_{32}}\right) + 1\right]} \frac{\left[j\left(\frac{\omega}{\omega_{cut2}} + \frac{R_{22}}{R_{32}}\right) + 1\right]}{\left[j\left(\frac{\omega}{\omega_{cut1}} - \frac{R_{21}}{R_{31}}\right) + 1\right]} \frac{\left[j\left(\frac{\omega}{\omega_{cut2}} - \frac{R_{22}}{R_{32}}\right) + 1\right]}{\left[j\left(\frac{\omega}{\omega_{cut2}} - \frac{R_{22}}{R_{32}}\right) + 1\right]}$$

Component parameters

Stage1		Stage2	
Element	Value	Element	Value
R11	2kΩ	R12	1kΩ
R21	7kΩ	R22	3.5k Ω
R31	2kΩ	R32	1kΩ
C1	86pF	C2	52pF

Bode plot of transfer function

3. Behaviors of High-Order Complex Filters Behavior of 4th-order Complex Filter

Image rejection ratio (IRR)

$$IRR(\omega) = \frac{\left[j\left(\frac{\omega}{\omega_{cut1}} + \frac{R_{21}}{R_{31}}\right) + 1\right] \left[j\left(\frac{\omega}{\omega_{cut2}} + \frac{R_{22}}{R_{32}}\right) + 1\right] \left[j\left(\frac{\omega}{\omega_{cut3}} + \frac{R_{23}}{R_{33}}\right) + 1\right] \left[j\left(\frac{\omega}{\omega_{cut4}} + \frac{R_{24}}{R_{34}}\right) + 1\right] \left[j\left(\frac{\omega}{\omega_{cut4}} - \frac{R_{24}}{R_{34}}\right) + 1\right] \left[j\left(\frac{\omega}{\omega_{cut4$$

4th-order complex filter

Bode plot of transfer function

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Superposition formula for multi-source networks
- 2. Behaviors of High-Order Polyphase Filters
- Derivation of image rejection ratio for polyphase filters
- **3. Behaviors of High-Order Complex Filters**
- Derivation of image rejection ratio for complex filters

4. Conclusions

4. Comparison (Superposition formula)

Features	Superposition formula	Conventional Superposition	Millan's theorem
Effects of all actuating sources	At one time	Several times	At one time
Transfer function accuracy	Yes	Νο	Νο
Single-input network analysis	Yes	Yes	Yes
Polyphase network analysis	Yes	Νο	Νο
Complex network analysis	Yes	Νο	Νο
Image rejection ratio accuracy	Yes	Νο	No

4. Discussions (Superposition formula)

Transfer function and image rejection ratio give useful information about the behaviors of polyphase filters and complex filters.

Fundamental network analysis theory for multisource systems:

- Compute the effects of all sources at one time,
- **Reduce** the wasteful time,
- **Decrease** the hand calculation times,
- Get the transfer function faster, and
- **Reduce** the network complexity.

4. Conclusions

This work:

- Proposal of superposition formula for multi-source network analysis
- Analysis of high-order passive RC poly-phase filters in all frequency domain
- Analysis of high-order active complex filters in all frequency domain
- Derivation of image rejection ratio in low-IF receivers Future of work:
- Analysis of I/Q mismatches, DC offsets, and parasitic components in polyphase and complex filters

References

- [1] Y. Yin, S. Wang, Y. Ma, S. Kang, H. Guan, G. Jin, X. Qi, "*The design of large image rejection and wideband CMOS active polyphase filter for BeiDou RF receiver*", IEICE Electronics Express, vol. 17, no. 12, pp. 20200110-20200110, 2020.
- [3] M. Tran, A.Kuwana, H. Kobayashi,"*Design of Sixth-Order Passive Quadrature Signal Generation Network Based on Polyphase Filter*", IEEE 15th Int. Conf. on Solid-State and Integrated Circuit Technology, Kunming, China, Nov. 2020.
- [4] L. Severo, W. Noije, "A 0.4-V 10.9-μW/Pole third-order complex BPF for low energy RF receivers," IEEE Trans. Circuits and Systems I, vol. 66, no. 6, pp. 2017–2026, 2019.
- [5] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "Mathematical Analysis and Design of 4-Stage Passive RC Network in RF Front-End System", 3rd Int. Conf. ICTSS2019, May, 2019.
- [6] Z. Xie, J. Wu, C. Chen, "*A compact low-power biquad for active-RC complex filter*", IEEE Trans. Circuits and Systems II, vol. 65, no. 6, pp. 709–713, June 2018.
- [7] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Mathematical Model and Analysis of 4-Stage Passive RC Polyphase Filter for Low-IF Receiver*", J. Mech. Elect. Intel. Syst. Vol. 3, no. 2, May 2020.
- [8] H. Kobayashi, N. Kushita, M. Tran, K. Asami, H. San, A. Kuwana, "*Analog Mixed-Signal RF Circuits for Complex Signal Processing*", 13th IEEE Int. Conf. ASICON, Oct. 2019.
- [9] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Pass-band Gain Improvement Technique for Passive RC Polyphase Filter in Bluetooth Low-IF Receiver using Two RC Band-stop Filters*", 5th Int. Symp. GUMI & 9th Int. Conf. AMDE AMM, 2020.
- [10] H. Tanimoto, "Exact Design of RC Polyphase Filters and Related Issues", IEICE Trans. Fund., vol. E96-A, no.2, 2013.
- [11] K. Asami, N. Kushita, A. Hatta, M. Tran, Y. Tamura, A. Kuwana, H. Kobayashi, "Analysis and Evaluation Method of RC Polyphase Filter", 13th IEEE Int. Conf. ASICON, Oct. 2019.
- [12] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Flat Pass-Band Method with Two RC Band-Stop Filters for 4-Stage Passive RC Polyphase Filter in Low-IF Receiver Systems*", 13th IEEE Int. Conf. ASICON, Oct. 2019.
- [13] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Minimum Gain Ripple Technique for Pass-Band of 4-Stage Passive RC Polyphase Filter in Low IF Receivers*", 5th Taiwan and Japan Conf. CAS, Aug. 2019.
- [14] W. Luo, N. Yan, Y. Chen, Y. Lin, H. Xu, "Design of An Efficient Wideband Quadrature Generator for Multiple Receivers Based on Poly-Phase Filter", IEEE 15th Int. Conf. on Solid-State and Integrated Circuit Technology, China, Nov. 2020.

Virtual TJCAS 2020 Taiwan and Japan Conference on Circuits and Systems

Thank you very much!

