

The 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference Virtual Conference

28-31 October 2020 , New York, USA

RINGING TEST FOR THIRD-ORDER LADDER LOW-PASS FILTERS

MinhTri Tran^{*}, Anna Kuwana, and Haruo Kobayashi

Gunma University, Japan

Outline

1. Research Background

- Motivation, objectives and achievements
- Self-loop function in a transfer function
- **2.** Ringing Test for Passive Networks
- Stability test for RLC low-pass filters
- **3. Ringing Test for Unity-Gain Amplifiers**
- Stability test for unity-gain amplifiers
- 4. Ringing Test for Ladder Low-Pass Filters
- Stability test for active 3rd-order ladder low-pass filters
- 5. Conclusions

1. Research Background

Noise in Electronic Systems

Performance of a system

Signal to Noise Ratio:

Common types of noise:

- Electronic noise
- Thermal noise,
- Intermodulation noise,
- Cross-talk,
- Impulse noise,
- Shot noise, and
- Transit-time noise.

Performance of a device

 $\mathbf{F} = \frac{\mathbf{Output \ SNR}}{\mathbf{Input \ SNR}}$

Device noise:

- Flicker noise,
- Thermal noise,
- White noise.

Linear networks

- Overshoot,
- Ringing

1. Research Background

Effects of Ringing on Electronic Systems

Ringing represents a distortion of a signal. Ringing is overshoot/undershoot voltage or current when it's seen on time domain.

Ringing does the following things:

- Causes EMI noise,
- Increases current flow,
- Consumes the power,
- Decreases the performance, and
- Damages the devices.

1. Research Background Objectives of Study

- Derivation of transfer function in electronic systems using superposition theorem
- Investigation of operating regions of linear negative feedback networks
- Over-damping (high delay in rising time)
- Critical damping (max power propagation)
- → Under-damping (overshoot and ringing)
- Stability test for electronic networks based on alternating current conservation

1. Research Background Achievements of Study

Superposition formula for multi-source networks

Self-loop function

Alternating current conservation

10 mH

inductance

1. Research Background

Approaching Methods

3rd-order ladder LPF

Derivation of self-loop function

Balun transformer

Implemented circuit

1. Research Background

Superposition Theorem for Multi-Source Systems

Superposition formula:

- V_o(t) : Voltage at one node
- V_i(t) : Input voltage sources
- I_{ai}(t) : Ahead-toward current sources
- I_{gi}(t) : Ground-toward current sources
- Z_{i, si, pi}(t): Impedances at each branch

Multi-source systems, feedback
 networks (op amps, amplifiers),
 polyphase filters, complex filters...

1. Research Background Analysis of 2nd–Order Polyphase Filter

Apply superposition at each node

$$\begin{split} V_{out} & \left(\frac{1}{Z_{C1}} + \frac{1}{R_1}\right) = \frac{V_a}{R_1} + \frac{\left(+j\right)^3 V_a}{Z_{C1}}; \\ V_a & \left(\frac{1}{Z_{C2}} + \frac{1}{R_2} + \frac{2}{R_1 + Z_{C1}}\right) = \frac{V_{in}}{R_2} + \frac{\left(+j\right)^3 V_{in}}{Z_{C2}}; \end{split}$$

Transfer function for positive polyphase signal

$$H_{P}(\omega) = \frac{V_{out}}{V_{in}} = \frac{\left[1 + \left(+j\right)^{3} b_{1} j\omega\right] \left[1 + \left(+j\right)^{3} b_{2} j\omega\right]}{a_{0} \left(j\omega\right)^{2} + a_{1} j\omega + 1}$$

Transfer function for negative polyphase signal

$$H_{N}(\omega) = \frac{V_{out}}{V_{in}} = \frac{\left[1 + (-j)^{3} b_{1} j\omega\right] \left[1 + (-j)^{3} b_{2} j\omega\right]}{a_{0} (j\omega)^{2} + a_{1} j\omega + 1};$$

Here:
$$b_0 = R_1 C_1; b_1 = R_2 C_2; a_0 = b_0 b_1; a_1 = b_0 + b_1 + 2R_2 C_1;$$

Image rejection ratio (IRR)

$$IRR(\omega) = \frac{\left|H_{P}(\omega)\right|}{\left|H_{N}(\omega)\right|} = \frac{\left|(1+b_{1}\omega)(1+b_{2}\omega)\right|}{\left|(1-b_{1}\omega)(1-b_{2}\omega)\right|};$$

1. Research Background Behaviors of 2nd–Order Polyphase Filter

Transfer function in all frequency domain

$$H(\omega) \Big| = \frac{(1+b_1\omega)(1+b_2\omega)}{\sqrt{(1-a_0\omega^2)^2 + (a_1\omega)^2}}; \omega \in \mathbb{R}$$

Here, R1 = 1 k Ω , C1 = 227 pF, R2 = 1 k Ω , C2 = 114 pF, at f₁ = 700 kHz, f₂ = 1.4 MHz,

Bode plot of transfer function in all frequency domain

1. Research Background Behavior of 4th-order Complex Filter

 $H_{P}(\omega) = \frac{\frac{R_{21}}{R_{11}}}{\left[1 + j\left(\frac{\omega}{\omega_{cut1}} + \frac{R_{21}}{R_{31}}\right)\right]} \frac{\frac{R_{22}}{R_{12}}}{\left[1 + j\left(\frac{\omega}{\omega_{cut2}} + \frac{R_{22}}{R_{32}}\right)\right]} \frac{\frac{\kappa_{23}}{R_{13}}}{\left[1 + j\left(\frac{\omega}{\omega_{cut3}} + \frac{R_{23}}{R_{33}}\right)\right]} \frac{\frac{\kappa_{24}}{R_{14}}}{\left[1 + j\left(\frac{\omega}{\omega_{cut4}} + \frac{R_{24}}{R_{34}}\right)\right]}$

 $H_{N}(\omega) = \frac{\frac{R_{21}}{R_{11}}}{\left[1 + j\left(\frac{\omega}{\omega_{-1}} - \frac{R_{21}}{R_{12}}\right)\right]} \frac{\frac{R_{22}}{R_{12}}}{\left[1 + j\left(\frac{\omega}{\omega_{-u'2}} - \frac{R_{22}}{R_{32}}\right)\right]} \frac{\frac{R_{23}}{R_{13}}}{\left[1 + j\left(\frac{\omega}{\omega_{-u'3}} - \frac{R_{24}}{R_{33}}\right)\right]} \frac{R_{24}}{\left[1 + j\left(\frac{\omega}{\omega_{-u'4}} - \frac{R_{24}}{R_{34}}\right)\right]}$

Transfer function for positive polyphase signals

Transfer function for negative polyphase signals

4th-order complex filter

Bode plot of transfer function

1. Research Background Self-loop Function in A Transfer Function

Linear system

Transfer function

$$H(\omega) = \frac{V_{out}(\omega)}{V_{in}(\omega)} = \frac{A(\omega)}{1 + L(\omega)}$$

○ Polar chart → Nyquist chart
 ○ Magnitude-frequency plot
 ○ Angular-frequency plot
 ○ Magnitude-angular diagram → Nichols diagram

Model of a linear system

$$H(\boldsymbol{\omega}) = \frac{b_0(j\omega)^n + \dots + b_{n-1}(j\omega) + b_n}{a_0(j\omega)^n + \dots + a_{n-1}(j\omega) + a_n}$$

 $A(\omega)$: Open loop function $H(\omega)$: Transfer function $L(\omega)$: Self-loop function Variable: angular frequency (ω)

1. Research Background

Characteristics of Adaptive Feedback Network

Adaptive feedback is used to control the output source along with the decision source (DC-DC Buck converter).
 Transfer function of an adaptive feedback network is significantly different from transfer function of a linear negative feedback network.

→ Loop gain is independent of frequency variable (referent voltage, feedback voltage, and error voltage are DC voltages).

1. Research Background Alternating Current Conservation

Transfer function

Simplified linear system

Self-loop function

10 mH inductance

Derivation of self-loop function

1. Research Background Limitations of Conventional Methods

- Middlebrook's measurement of loop gain
- →Applying only in feedback systems (DC-DC converters).
- Replica measurement of loop gain
- →Using two identical networks (not real measurement).
- Nyquist's stability condition
- \rightarrow Theoretical analysis for feedback systems (Lab tool).
- Nichols chart of loop gain
- \rightarrow Only used in feedback control theory (Lab tool).
- Conventional superposition
- \rightarrow Solving for every source (several times).

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- **2.** Ringing Test for Passive Networks
- Stability test for RLC low-pass filters
- 3. Ringing Test for Unity-Gain Amplifiers
- Stability test for unity-gain amplifiers
- 4. Ringing Test for Ladder Low-Pass Filters
- Stability test for active 3rd-order ladder low-pass filters
- 5. Conclusions

2. Ringing Test for Passive Networks Characteristics of 2nd-order Transfer Function

Second-order transfer function: $H(\omega) = \frac{1}{1 + a_0(j\omega)^2 + a_1j\omega}$

Case	Over-damping	Critical damping	Under-damping
Delta (Δ)	$\frac{1}{a_0} < \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 > 0$	$\frac{1}{a_0} = \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 = 0$	$\frac{1}{a_0} > \left(\frac{a_1}{2a_0}\right)^2 \Longrightarrow \Delta = a_1^2 - 4a_0 < 0$
$\begin{array}{c} \textbf{Module} \\ H(\omega) \end{array}$	$\frac{\frac{1}{a_0}}{\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} - \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}\sqrt{\omega^2 + \left(\frac{a_1}{2a_0} + \sqrt{\left(\frac{a_1}{2a_0}\right)^2 - \frac{1}{a_0}}\right)^2}}$	$\frac{\frac{1}{a_0}}{\left[\omega^2 + \left(\frac{a_1}{2a_0}\right)^2\right]} = \frac{1}{2} = -6dB$	$\boxed{\frac{\frac{1}{a_{0}}}{\sqrt{\left(\omega - \sqrt{\frac{1}{a_{0}} - \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\right)^{2} + \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\sqrt{\left(\omega + \sqrt{\frac{1}{a_{0}} - \left(\frac{a_{1}}{2a_{0}}\right)^{2}}\right)^{2} + \left(\frac{a_{1}}{2a_{0}}\right)^{2}}}$
Angular $\theta(\omega)$	$-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}-\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}-\arctan\left(\frac{\omega}{\left(\frac{a_1}{2a_0}+\sqrt{\left(\frac{a_1}{2a_0}\right)^2-\frac{1}{a_0}}\right)}\right)$	$-2 \arctan\left(\frac{2a_0\omega}{a_1}\right)$	$-\arctan\left(\frac{\omega-\sqrt{\frac{1}{a_0}-\left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)-\arctan\left(\frac{\omega+\sqrt{\frac{1}{a_0}-\left(\frac{a_1}{2a_0}\right)^2}}{\frac{a_1}{2a_0}}\right)$
$\omega_{cut} = \frac{a_1}{2a_0}$	$\left H(\omega_{cut}) < \frac{2a_0}{a_1} \right \Theta(\omega_{cut}) > -\frac{\pi}{2}$	$\left \left H(\omega_{cut}) \right = \frac{2a_0}{a_1} \right \theta(\omega_{cut}) = -\frac{\pi}{2}$	$\left H(\omega_{cut}) \right > \frac{2a_0}{a_1} \qquad \Theta(\omega_{cut}) < -\frac{\pi}{2}$

2. Ringing Test for Passive Networks Characteristics of 2nd-order Self-loop Function

Second-order self-loop function: $L(\omega) = j\omega [a_0 j\omega + a_1]$

Case	Over-damping		Critical damping		Under-damping	
Delta (Δ)	$\Delta = a_1^2 - 4a_0 > 0$		$\Delta = a_1^2 - 4a_0 = 0$		$\Delta = a_1^2 - 4a_0 < 0$	
$ L(\omega) $	$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$		$\omega \sqrt{\left(a_0 \omega\right)^2 + a_1^2}$	
θ(ω)	$\frac{\pi}{2}$ +	$\arctan \frac{a_0 \omega}{a_1}$	$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$		$\frac{\pi}{2} + \arctan \frac{a_0 \omega}{a_1}$	
$\omega_{\rm l} = \frac{a_{\rm l}}{2a_{\rm o}}\sqrt{\sqrt{5}-2}$	$ L(\omega_1) > 1$	$\pi - \theta(\omega_1) > 76.3^{\circ}$	$ L(\omega_1) = 1$	$\pi - \theta(\omega_1) = 76.3^{\circ}$	$\left L(\omega_1)\right < 1$	$\pi - \theta(\omega_1) < 76.3^{\circ}$
$\omega_2 = \frac{a_1}{2a_0}$	$ L(\omega_2) > \sqrt{5}$	$\pi - \theta(\omega_2) > 63.4^{\circ}$	$ L(\omega_2) = \sqrt{5}$	$\pi - \Theta(\omega_2) = 63.4^\circ$	$ L(\omega_2) < \sqrt{5}$	$\pi - \theta(\omega_2) < 63.4^{\circ}$
$\omega_3 = \frac{a_1}{a_0}$	$ L(\omega_3) > 4\sqrt{2}$	$\pi - \theta(\omega_3) > 45^\circ$	$\left L(\omega_3)\right = 4\sqrt{2}$	$\pi - \theta(\omega_3) = 45^\circ$	$\left L(\omega_3)\right < 4\sqrt{2}$	$\pi - \theta(\omega_3) < 45^{\circ}$

2. Ringing Test for Passive Networks **Operating Regions of 2nd-Order System**

- •Under-damping: $H_1(\omega) = \frac{1}{(j\omega)^2 + j\omega};$ $H_1(\omega) = \frac{1}{(j\omega)^2 + j\omega + 1};$
- - $L_2(\omega) = (j\omega)^2 + 2j\omega;$
- - $L_3(\omega) = (j\omega)^2 + 3j\omega;$

•Critical damping: $H_2(\omega) = \frac{1}{(j\omega)^2 + 2j\omega + 1}; \quad \bigoplus_{j=1,5}^{2.5}$ •Over-damping: $H_3(\omega) = \frac{1}{(j\omega)^2 + 3j\omega + 1};$

Transient response

Bode plot of transfer function

Nichols plot of self-loop function

2. Ringing Test for Passive Networks Stability Test for Passive 2rd-Order RLC LPF

Passive RLC Low-pass Filter

Derivation of self-loop function

Transfer function

$$H(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

Self-loop function

 $L(\omega) = a_0 (j\omega)^2 + a_1 j\omega;$

where, $a_0 = LC; a_1 = RC;$

Implemented circuit

2. Ringing Test for Passive Networks **Stability Test for 2rd-Order Passive RLC LPF**

Bode plot of transfer function

Nichols plot of self-loop function

Over-damping 1.0 0.5 Amplitude (V) 0.0 -0.5 -1.0 -0.0003 -0.0002 0.0001 -0.0001 0.0000 0.0002 0.0003 Time (s) Critical damping 1.0 Amplitude (V) 0.5 0.0 -0.5 -1.0

Transient responses

20

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Ringing Test for Passive Networks
- Stability test for RLC low-pass filters
- 3. Ringing Test for Unity-Gain Amplifiers
- Stability test for unity-gain amplifiers
- 4. Ringing Test for Ladder Low-Pass Filters
- Stability test for active 3rd-order ladder low-pass filters
- 5. Conclusions

3. Ringing Test for Unity-Gain Amplifiers Analysis of Op Amp without Miller's Capacitor

Small signal model

Transfer function $H(\omega)$ and self-loop function $L(\omega)$

$$H(\omega) = \frac{b_0 j\omega + b_1}{a_0 (j\omega)^2 + a_1 j\omega + 1};$$

$$L(\omega) = a_0 (j\omega)^2 + a_1 j\omega$$

Where,

$$b_{0} = R_{D}R_{S} \Big[\Big(C_{GD} + C_{DB} \Big) \Big(C_{GS} + C_{GD} \Big) - C_{GD}^{2} \Big]$$

$$b_{1} = \Big[R_{D} \Big(C_{GD} + C_{DB} \Big) + R_{S} \Big(C_{GS} + C_{GD} \Big) + R_{D}R_{S}g_{m}C_{GD} \Big]$$

$$a_{0} = R_{D}C_{GD}; a_{1} = -R_{D}g_{m};$$
22

3. Ringing Test for Unity-Gain Amplifiers Unity-Gain Amplifier without Miller's Capacitor

Unity-Gain Amplifier Vdd μJ T. M5 M8 M9 M4 Vout M1 H M6 M7 1P M2 **Transient response** Input signal Output signal 1.8 1.6

3. Ringing Test for Unity-Gain Amplifiers Two-stage Op Amp with Frequency Compensation

Small signal model

Transfer function H(ω)

$$H(\omega) = \frac{b_0 (j\omega)^3 + b_1 (j\omega)^2 + b_2 j\omega + b_3}{a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega + 1};$$

Self-loop function $L(\omega)$

$$L(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega$$

3. Ringing Test for Unity-Gain Amplifiers Stability Test for Op Amp with Miller's Capacitor

Simulated transient response

Operating regions Under-damping: R1= 2 k Ω , C1 = 1 pF Critical damping: R1 = 3.5 k Ω , C1 = 0.2 pF Over-damping: R1 = 3.5 k Ω , C1 = 0.8 pF

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Ringing Test for Passive Networks
- Stability test for RLC low-pass filters
- 3. Ringing Test for Unity-Gain Amplifiers
- Stability test for unity-gain amplifiers
- 4. Ringing Test for Ladder Low-Pass Filters
- Stability test for active 3rd-order ladder low-pass filters
- 5. Conclusions

4. Ringing Test for Ladder Low-Pass Filters Analysis of Active 3rd-Order Ladder LPF

Transfer function & self-loop function

$$H_{out}(\omega) = \frac{V_{out}}{V_{in}} = \frac{1}{a_0(j\omega)^3 + a_1(j\omega)^2 + a_2j\omega + 1};$$

$$L(\omega) = j\omega \Big[a_0(j\omega)^2 + a_1j\omega + a_2 \Big]$$

where,
$$b_0 = L_2C_2; b_1 = R_2C_2;$$

 $a_0 = R_1C_1L_2C_2; a_1 = R_1C_1R_2C_2 + L_2C_2;$
 $a_2 = R_1(C_1 + C_2) + R_2C_2;$

 $R1 = 100 \Omega$, R2 = 50 kΩ, $R3 = R4 = 50 \text{ k}\Omega$, C1 = 5 nF, C2 = 10 nF,

C3 = 3.18 nF, at
$$f_0 = 100$$
 kHz.

- **Over-damping** (R5 = $0.5 \text{ k}\Omega$),
- Critical damping (R5 = $1 k\Omega$), and
- **Under-damping** (R5 = $2 \text{ k}\Omega$). 27

4. Ringing Test for Ladder Low-Pass Filters Simulation Results of 3nd-Order Ladder LPF

- Critical damping - Under-damping Over-damping 6 4 **Phase margin** Magnitude (dB) 2 **36** degrees 100° 0 -2 107° 144° -4 -6 -8 90 95 105 115 120 125 130 100 110 135 Phase (deg)

Transient response

Over-damping: →Phase margin is 80 degrees. Critical damping: →Phase margin is 73 degrees. Under-damping: →Phase margin is 36 degrees.

4. Ringing Test for Ladder Low-Pass Filters Implemented Circuit of 3rd-Order Ladder LPF

[/]Device under test

4. Ringing Test for Ladder Low-Pass Filters Measurement Results of 3nd-order Ladder LPF

Bode plot of transfer function Over-damping ____ Critical damping ____ Under-damping 5 1 dB 0 Magnitude (dB) -3dB -5 -10 -6 dB -15 -20 -25 100 kHz 300 kHz 5 kHz 10 kHz Frequency (Hz)

Transient response

Nichols plot of self-loop function

Over-damping: →Phase margin is 77 degrees. Critical damping: →Phase margin is 70 degrees. Under-damping: →Phase margin is 64 degrees.

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Self-loop function in a transfer function
- 2. Ringing Test for Passive Networks
- Stability test for RLC low-pass filters
- **3. Ringing Test for Unity-Gain Amplifiers**
- Stability test for unity-gain amplifiers
- 4. Ringing Test for Ladder Low-Pass Filters
- Stability test for active 3rd-order ladder low-pass filters

5. Conclusions

5. Comparison (Superposition formula)

Features	Superposition formula	Conventional Superposition	Millan's theorem
Effects of all actuating sources	At one time	Several times	At one time
Transfer function accuracy	Yes	Νο	Νο
Single-input network analysis	Yes	Yes	Yes
Polyphase network analysis	Yes	Νο	Νο
Complex network analysis	Yes	Νο	Νο
Image rejection ratio accuracy	Yes	Νο	Νο

5. Discussions (Superposition formula)

Transfer function and image rejection ratio give useful information about the behaviors of polyphase filters and complex filters.

Fundamental network analysis theory for multisource systems:

- Compute the effects of all sources at one time,
- **Reduce** the wasteful time,
- **Decrease** the hand calculation times,
- Get the transfer function faster, and
- **Reduce** the network complexity.

5. Comparison (Self-loop function)

Features	Alternating current conservation	Replica measurement	Middlebrook's method
Main objective	Self-loop function	Loop gain	Loop gain
Transfer function accuracy	Yes	Νο	Νο
Ringing Test	Yes	Yes	Yes
Operating region accuracy	Yes	Νο	Νο
Phase margin accuracy	Yes	No	Νο
Passive networks	Yes	No	Νο

5. Discussions (Self-loop function)

- Loop gain is independent of frequency variable.
- →Loop gain in adaptive feedback network is significantly different from self-loop function in linear negative feedback network.

Nichols chart is only used in MATLAB simulation.

https://www.mathworks.com/help/control/ref/nichols.html

Nichols chart isn't used widely in practical measurements (only used in control theory).

5. Conclusions

This work:

- Proposal of alternating current conservation for deriving self-loop function in a transfer function
 → Observation of self-loop function can help us
 - optimize the behavior of a high-order system.
- Implementations of circuits and measurements of self-loop functions for passive & active low-pass filters → Theoretical concepts of stability test are verified by laboratory simulations and practical experiments.

Future of work:

• Stability test for parasitic components in transmission lines, printed circuit boards, physical layout layers

References

[1] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd Edition McGraw-Hill, 2016.

[2] H. Kobayashi, N. Kushita, M. Tran, K. Asami, H. San, A. Kuwana "*Analog - Mixed-Signal - RF Circuits for Complex Signal Processing*", 13th IEEE Int. Conf. ASIC, Chongqing, China, Nov, 2019.

[3] M. Liu, I. Dassios, F. Milano, "On the Stability Analysis of Systems of Neutral Delay Differential Equations", Circuits, Systems, and Signal Processing, Vol. 38(4), 1639-1653, 2019.

[4] X. Peng, H. Yang, "Impedance-based stability criterion for the stability evaluation of grid-connected inverter systems with distributed parameter lines", CSEE J. Power and Energy Systems, pp 1-13, 2020.

[5] N. Kumar, V. Mummadi, "Stability Region Based Robust Controller Design for High-gain Boost DC-DC Converter", IEEE Trans. Industrial Electronics, Feb. 2020.

[6] H. Abdollahi, A. Khodamoradi, E. Santi, P. Mattavelli, "Online Bus Impedance Estimation and Stabilization of DC Power Distribution Systems: A Method Based on Source Converter Loop-Gain Measurement", 2020 IEEE Applied Power Electronics Conference and Exposition, LA, USA, June 2020.

[7] M. Liu, I. Dassios, G. Tzounas, F. Milano, "*Stability Analysis of Power Systems with Inclusion of Realistic-Modeling of WAMS Delays*", IEEE Trans. Power Systems, Vol. 34(1), 627-636, 2019.

[8] P. Hurst and S. Lewis, "*Determination of Stability Using Return Ratios in Balanced Fully Differential Feedback Circuits*", IEEE Trans. Circuits and Systems II, pp. 805-817, Dec. 1995.

[9] T. Emami, J. Benin, "Computer Support for Teaching Routh Hurwitz Criterion", Proc. American Control Conference, Boston, MA, July 2016.

[10] L. Fan, Z. Miao, "Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or Eigenvalue Analysis", IEEE Trans. Power Systems, Vol. 35, Issue 4, July 2020.

[11] P. Wang, S. Feng, P. Liu, N. Jiang, X. Zhang, "*Nyquist stability analysis and capacitance selection method of DC current flow controllers for meshed multi-terminal HVDC grids*", CSEE J. Power and Energy Systems, pp. 1-13, July 2020.

[12] N. Tsukiji, Y. Kobori, H. Kobayashi, "A Study on Loop Gain Measurement Method Using Output Impedance in DC-DC Buck Converter", IEICE Trans. Communications, Vol. E101-B(9), pp.1940-1948, Sep. 2018.

[13] J. Wang, G. Adhikari, N. Tsukiji, H. Kobayashi, "*Analysis and Design of Operational Amplifier Stability Based on Routh-Hurwitz Stability Criterion*", IEEJ Trans. Electronics, Information and Systems, Vol. 138(128), pp.1517-1528, Dec. 2018.

[14] A. Sedra, K. Smith, Microelectronic Circuits, 6th ed. Oxford University Press, New York, 2010.

[15] M. Tran, "Damped Oscillation Noise Test for Feedback Circuit Based on Comparison Measurement Technique", 73rd System LSI Joint Seminar, Tokyo, Japan, Oct. 2019.

References

[16] R. Middlebrook, "Measurement of Loop Gain in Feedback Systems", Int. J. Electronics, Vol 38, No. 4, pp. 485-512, 1975.

[17] A. Riccobono, M. Cupelli, A. Monti, E. Santi, T. Roinila, H. Ab- dollahi, "*Stability of shipboard dc power distribution: Online impedance-based systems methods*", IEEE Electrification Magazine, Vol. 5(3), pp. 55-67, Sept. 2017.

[18] N. Cohen, Y. Chait, O. Yaniv, C. Borghesa, "*Stability Analysis Using Nichols Charts*", Proc. 31st IEEE Conf. Decision and Control, Tucson, USA, Dec. 1992.

[19] T. Roinila, H. Abdollahi, S. Arrua, E. Santi, "*Real-time stability analysis and control of multi-converter systems by using mimo-identification techniques*", IEEE Trans. Power Electronics, pp. 1-1, 2018.

[20] M. Tran, Y. Sun, Y. Kobori, A. Kuwana, H. Kobayashi, "*Overshoot Cancelation Based on Balanced Charge-Discharge Time Condition for Buck Converter in Mobile Applications*", 2019 13th IEEE Int. Conf. ASIC, Chongqing, China, Oct. 2019.

[21] A. Riccobono, E. Santi, "*Comprehensive review of stability criteria for dc power distribution systems*", IEEE Trans. Industry Applications, Vol. 50(5), pp. 3525-3535, Sept. 2014.

[22] M. Tran, A. Kuwana, H. Kobayashi, "*Design of Active Inductor and Stability Test for Ladder RLC Low Pass Filter Based on Widened Superposition and Voltage Injection*", The 8th IIAE Int. Conf. Industrial Application Engineering, Shimane, Japan, March 2020.

[23] M. Tran, A. Kuwana, H. Kobayashi, "*Derivation of Loop Gain and Stability Test for Multiple Feedback Low Pass Filter Using Deboo Integrator*", The 8th IIAE Int. Conf. Industrial Application Engineering, Shimane, Japan, March 2020.

[24] Y. Tsividis, P. Gray, "An Integrated NMOS Operational Amplifier with Internal Compensation", IEEE J. Solid-State Circuits, Vol. SC-11, pp. 748-753, Dec. 1976.

[25] P. Hurst, "Exact Simulation of Feedback Circuit Parameters", IEEE Trans. Circuits and Systems, Vol. CAS-38 (11), pp. 1382-1389, Nov. 1991.

[26] B. Ahuja, "An Improved Frequency Compensation Technique for CMOS Operational Amplifiers", IEEE J. Solid-State Circuits, Vol. SC-18, pp. 629-633, Dec. 1983.

[27] P. Hurst. "A Comparison of Two Approaches to Feedback Circuit Analysis", IEEE Trans. Education, Vol. 35(3), pp. 253-261, Aug. 1992.

[28] E. Cherry, "A New Result in Negative Feedback Theory and Its Application to Audio Power Amplifiers", Int. J. Circuit Theory, Vol. 6, pp. 265-288, July 1978.

[29] M. Tran, A. Kuwana, H. Kobayashi, "*Derivation of Loop Gain and Stability Test for Low Pass Tow-Thomas Biquad Filter*", 10th Int. Conf. Computer Science, Engineering and Applications, London, UK, July 2020.

[30] M. Tran, A. Kuwana, H. Kobayashi, "*Design of Active Inductor and Stability Test for Passive RLC Low Pass Filter*", 10th Int. Conf. Computer Science, Engineering and Applications, London, UK, July 2020.

The 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference Virtual Conference

28-31 October 2020 , New York, USA

Thank you very much!

