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1. Research Background
Noise in Electronic Systems

Common types of noise:
• Electronic noise
• Thermal noise,
• Intermodulation noise,
• Cross-talk,
• Impulse noise,
• Shot noise, and
• Transit-time noise.

Linear networks
• Overshoot,
• Ringing
• Oscillation noise

Device noise:
• Flicker noise,
• Thermal noise,
• White noise.

Signal to 
Noise Ratio:

Performance of a devicePerformance of a system

Figure of 
Merit:


Signal power

SNR
Noise power


Output SNR
Input SNR

F
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1. Research Background
Effects of Ringing on Electronic Systems

Ringing represents a distortion of a signal.
Ringing is overshoot/undershoot voltage or current 
when it’s seen on time domain. 

Ringing does the following things:
• Causes EMI noise,
• Increases current flow,
• Consumes the power,
• Decreases the performance, and
• Damages the devices.

STABILITY TEST

Unstable system
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• Derivation of transfer function in electronic 
systems using superposition theorem

o Investigation of operating regions of linear 
negative feedback networks

 Over-damping (high delay in rising time)
 Critical damping (max power propagation)
 Under-damping (overshoot and ringing)
• Stability test for electronic networks based on 

alternating current conservation

1. Research Background
Objectives of Study



Alternating current conservation
Incident 
current

Transmitted 
current
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1. Research Background
Achievements of Study

Superposition formula for multi-source networks
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1. Research Background
Approaching Methods

3rd-order ladder LPF
Balun

transformer

input

output

Implemented circuit
Derivation of self-loop function

Balun
transformer
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1. Research Background
Superposition Theorem for Multi-Source Systems
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Superposition formula:

VO(t) :  Voltage at one node
Vi(t) :  Input voltage sources
Iai(t) :  Ahead-toward current sources
Igi(t) :  Ground-toward current sources
Zi, si, pi,(t): Impedances at each branch

o Multi-source systems, feedback 
networks (op amps, amplifiers), 
polyphase filters, complex filters…

A general 
multi-source 
network



8

1. Research Background
Analysis of 2nd–Order Polyphase Filter

Transfer function for positive polyphase signal2nd-order RC polyphase filter
Va Vout
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Apply superposition at each node

Transfer function for negative polyphase signal

Here:

Image rejection ratio (IRR)
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1. Research Background
Behaviors of 2nd–Order Polyphase Filter

Transfer function in all frequency domain 2-order RC polyphase filter
Va Vout
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Here, R1 = 1 kΩ, C1 = 227 pF, R2 = 1 kΩ, 
C2 = 114 pF, at f1 = 700 kHz, f2 = 1.4 MHz,

Bode plot of transfer function in all frequency domain 

IRR = 32dB
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1. Research Background
Behavior of 4th-order Complex Filter
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1. Research Background
Self-loop Function in A Transfer Function 
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Model of a linear system

oMagnitude-frequency plot
oAngular-frequency plot 

oPolar chart  Nyquist chart

oMagnitude-angular diagram  Nichols diagram

Bode plots

Variable:  angular frequency (ω)
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1. Research Background
Characteristics of Adaptive Feedback Network

Block diagram of a typical adaptive feedback system

Reference 
voltage

Adaptive feedback is used to control the output source along with the 
decision source (DC-DC Buck converter). 

Transfer function of an adaptive feedback network is significantly 
different from transfer function of a linear negative feedback network. 
 Loop gain is independent of frequency variable (referent voltage, 
feedback voltage, and error voltage are DC voltages).

DC voltage

DC voltage

DC voltage

DC voltage
+ Ripple voltage
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1. Research Background
Alternating Current Conservation
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Simplified linear system
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1. Research Background 
Limitations of Conventional Methods

o Middlebrook’s measurement of loop gain
Applying only in feedback systems (DC-DC converters).
o Replica measurement of loop gain
Using two identical networks (not real measurement).
o Nyquist’s stability condition
 Theoretical analysis for feedback systems (Lab tool).
o Nichols chart of loop gain
 Only used in feedback control theory (Lab tool).
o Conventional superposition 
Solving for every source (several times).
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2. Ringing Test for Passive Networks
Characteristics of 2nd-order Transfer Function
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2. Ringing Test for Passive Networks
Characteristics of 2nd-order Self-loop Function
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2. Ringing Test for Passive Networks
Operating Regions of 2nd-Order System
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Passive RLC Low-pass Filter
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Derivation of self-loop function 
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Self-loop function

Implemented circuit

Transfer function

2. Ringing Test for Passive Networks
Stability Test for Passive 2rd-Order RLC LPF

0 1; ; a LC a RCwhere,
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Transient responses

94o 107o

122o

2. Ringing Test for Passive Networks
Stability Test for 2rd-Order Passive RLC LPF

Phase margin
58 degrees

Nichols plot of self-loop function

Bode plot of transfer function

2dB

-10dB
0dB
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3. Ringing Test for Unity-Gain Amplifiers
Analysis of Op Amp without Miller’s Capacitor

Without frequency compensation

Simplified model

Small signal model

Transfer function H(ω) and self-loop function L(ω)
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3. Ringing Test for Unity-Gain Amplifiers
Unity-Gain Amplifier without Miller’s Capacitor

Bode plot of transfer function H(ω)

Nichols plot of self-loop function L(ω)

Unity-Gain Amplifier 

Transient response 

167o

Phase margin = 13 degrees

15 dB
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3. Ringing Test for Unity-Gain Amplifiers
Two-stage Op Amp with Frequency Compensation

With Miller’s capacitor and resistor

Simplified model

Small signal model

Transfer function H(ω)

Self-loop function L(ω)
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3. Ringing Test for Unity-Gain Amplifiers
Stability Test for Op Amp with Miller’s Capacitor

150o

90o79o

Simulated transient response

Nichols plot 
of self-loop 
function

Unity-gain 
amplifier 
with Miller’s 
capacitor

Bode plot 
of transfer 
function

Phase margin
30 degrees

Under-damping:
R1= 2 kΩ, C1 = 1 pF 
Critical damping:
R1 = 3.5 kΩ, C1 = 0.2 pF 
Over-damping:
R1 = 3.5 kΩ, C1 = 0.8 pF

Operating regions

5dB
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4. Ringing Test for Ladder Low-Pass Filters
Analysis of Active 3rd-Order Ladder LPF
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Passive 3rd-order ladder LPF Transfer function & self-loop function

where, 

Active 3rd-order ladder LPF
R1 = 100 Ω, R2 = 50 kΩ, 
R3 = R4 = 50 kΩ, C1 = 5 nF, C2 = 10 nF, 
C3 = 3.18 nF, at f0 = 100 kHz. 
• Over-damping (R5 = 0.5 kΩ), 
• Critical damping (R5 = 1 kΩ), and
• Under-damping (R5 = 2 kΩ).

General impedance converter
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4. Ringing Test for Ladder Low-Pass Filters
Simulation Results of 3nd-Order Ladder LPF
Bode plot of transfer function Transient response

100o

107o
144o

Nichols plot of self-loop function
Over-damping:
Phase margin is 80 degrees.
Critical damping:
Phase margin is 73 degrees.
Under-damping: 
Phase margin is 36 degrees.

Phase margin
36 degrees

0dB

-12dB

-6dB
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4. Ringing Test for Ladder Low-Pass Filters
Implemented Circuit of 3rd-Order Ladder LPF  

Balun transformer
(10 mH inductance)

Measurement of self-loop function

Device under test
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4. Ringing Test for Ladder Low-Pass Filters
Measurement Results of 3nd-order Ladder LPF

Over-damping:
Phase margin is 77 degrees.
Critical damping:
Phase margin is 70 degrees.
Under-damping: 
Phase margin is 64 degrees.

Transient response

Bode plot of transfer function Nichols plot of self-loop function

103o

110o 116o

1 dB

-6 dB

-3dB

Phase margin
64 degrees
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5. Comparison (Superposition formula)

Features Superposition 
formula 

Conventional
Superposition

Millan’s
theorem

Effects of all 
actuating sources At one time Several times At one time

Transfer function 
accuracy Yes No No

Single-input 
network analysis Yes Yes Yes

Polyphase 
network analysis Yes No No

Complex network 
analysis Yes No No

Image rejection 
ratio accuracy Yes No No



5. Discussions (Superposition formula)

Transfer function and image rejection ratio give
useful information about the behaviors of
polyphase filters and complex filters.
Fundamental network analysis theory for multi-
source systems:
• Compute the effects of all sources at one time,
• Reduce the wasteful time,
• Decrease the hand calculation times,
• Get the transfer function faster, and
• Reduce the network complexity.



5. Comparison (Self-loop function)

Features Alternating current 
conservation

Replica
measurement

Middlebrook’s
method

Main objective Self-loop function Loop gain Loop gain

Transfer function 
accuracy Yes No No

Ringing Test Yes Yes Yes

Operating region 
accuracy Yes No No

Phase margin 
accuracy Yes No No

Passive networks Yes No No



5. Discussions (Self-loop function)

• Loop gain is independent of frequency variable.
Loop gain in adaptive feedback network is significantly 

different from self-loop function in linear negative 
feedback network.

https://www.mathworks.com/help/control/ref/nichols.html

Network Analyzer

Nichols chart is only used 
in MATLAB simulation.

Nichols chart isn’t used widely in 
practical measurements 

(only used in control theory).

(Technology limitations)



This work:
• Proposal of alternating current conservation for 

deriving self-loop function in a transfer function
 Observation of self-loop function can help us  
optimize the behavior of a high-order system.

• Implementations of circuits and measurements of 
self-loop functions for passive & active low-pass filters
Theoretical concepts of stability test are verified by 
laboratory simulations and practical experiments.

Future of work:
• Stability test for parasitic components in transmission 

lines, printed circuit boards, physical layout layers

5. Conclusions
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