電流非一定分割抵抗ラダーを用いた DA変換器構成と微分非線形性の解析

<u>平井愛統 (Manato Hirai)</u>, 谷本 洋, 源代裕治,山本修平, 桑名杏奈, 小林春夫

群馬大学,北見工業大学

B3 (Zoom-2) 16:15~

Kobayashi Lab. Gunma University

2021/3/5

- 研究背景•目的
- ・DA変換器の構成 - R-2R 電流源 DAC
- N進抵抗ラダーDACの構成
 抵抗ラダーを用いた電流分割
 N進抵抗ラダーを用いた構成
- 異なる分流比を持つ抵抗ラダーの接続
 - 接続の条件・手順
 - DAC構成案と非線形性シミュレーション
- 結論

- 研究背景•目的
- DA変換器の構成
 R-2R 電流源 DAC
- N進抵抗ラダーDACの構成
 - 抵抗ラダーを用いた電流分割
 - -N進抵抗ラダーを用いた構成
- ・異なる分流比を持つ抵抗ラダーの接続
 - 接続の条件・手順
 - DAC構成案と非線形性シミュレーション

研究の背景

デジタルアナログ変換器(DAC)の用途
 デジタル信号処理結果の出力

- アナログデジタル変換器(ADC)の内部回路

目的:抵抗ラダーによる非一定の電流分割を用いた DA変換器回路構成の検討と性能向上

- 研究背景•目的
- DA変換器の構成 - R-2R 電流源 DAC
- N進抵抗ラダーDACの構成
 抵抗ラダーを用いた電流分割
 - -N進抵抗ラダーを用いた構成
- ・異なる分流比を持つ抵抗ラダーの接続
 - 接続の条件・手順
 - DAC構成案と非線形性シミュレーション

R-2R 電流源 DAC

5-bit R-2R Current-steering DAC(線形回路モデル)

- R-2R 抵抗ラダーによる2進重みづけを利用
 - 電流*I*₁,..., *I*₅は2進重みづけされる
- 利点
 - デコーダ不要
 - 電流源による 比較的高速な動作

・欠点

- 素子誤差でDNLが劣化
- 上位ビット変化タイミングで
 グリッチが発生

R-2R DAC の動作原理

ノートンの定理を用いて出力から離れた側から
 等価回路に変換

- 内部の電流が出力に対して2倍ずつの重みをもつ

3-bit R-2R DAC

等価回路への変換

セグメント化 R-2R DAC

素子ばらつきに起因する線形性劣化・グリッチを軽減
 – Unary部駆動のための温度計デコーダが必要

8-bit Segmented R-2R DAC (3-bit Unaryコード駆動)

- 研究背景·目的
- DA変換器の構成
 R-2R 電流源 DAC
- N進抵抗ラダーDACの構成

 抵抗ラダーを用いた電流分割の検討
 N進抵抗ラダーを用いた構成

 Bなる分流比を持つ抵抗ラダーの接続

 接続の条件・手順
 DAC構成案と非線形性シミュレーション

抵抗ラダーを用いた等比電流分割

無限に続く抵抗ラダーの合成抵抗Z
 $Z = \frac{R}{2} + \frac{\sqrt{R(R+4r)}}{2}$ 整数Nについて電流分割比 N = 1 · 1 / □ / たい場

• 整数Nについて電流分割比
$$N - 1:1$$
 にしたい場合
 $I_r: I_R = Z: r = N - 1:1$
 $\leftrightarrow R: r = (N - 1)^2: N$

無限抵抗ラダーの有限打ち切り

• 電流分割比N - 1: 1を変えない終端抵抗値 R_T $R_T = Z - R = \frac{R}{N - 1}$

電流をN - 1:1に分割する有限抵抗ラダーの R, r, R_T の抵抗比

$$R: r: R_T = (N - 1)^2: N: N - 1$$

N 進 抵 抗 ラ ダ ー D A C の 構 成

N:電流分割比 K:ラダー段数 *I_j:j*番目ノードに流し込まれる電流 *R_u:基準抵抗 I*:単位電流

• N = 2の場合 ⇒ *K*-bit R-2R DAC

出力電圧と出力ステップ数

• 出力電圧

$$V_{\text{OUT}}(I_1, \cdots, I_K, R_u, N, K) = (N-1)R_u \sum_{j=1}^K \left(\frac{I_j}{N^{K-j}}\right)$$

- 出力電圧最大値 $V_{MAX}(I, R_u, N, K) = R_u I \cdot N(N-1) \cdot \left(1 - \frac{1}{N^K}\right)$
- ・ 出力電圧最小ステップ $V_{MIN}(I, R_u, N, K) = (N-1)R_uI \cdot \frac{1}{N^{K-1}}$

N:電流分割比K:ラダー段数
$$I_j: j$$
番目ノードに流し込まれる電流 $R_u: 基準抵抗$ I:単位電流

- 研究背景·目的
- DA変換器の構成
 R-2R 電流源 DAC
- N進抵抗ラダーDACの構成

 抵抗ラダーを用いた電流分割
 N進抵抗ラダーを用いた構成例

 異なる分流比を持つ抵抗ラダーの接続
 - 接続の条件・手順
 - DAC構成案と非線形性シミュレーション

15/30

構成例 N = 4, 4進ラダーDAC

- ラダー抵抗比
 9R:4R:3R
- 電圧ステップ数 $N^{K} - 1$ = $4^{3} - 1$ = **63 段階**
- 出力電圧

V

$$I_{OUT}(I_1, I_2, I_3, R_u) = 3R_u \left(I_3 + \frac{1}{4^1} I_2 + \frac{1}{4^2} I_1 \right)$$

各段の $I_i \rightarrow$ 出力に対して4倍ずつの重みをもつ

- 研究背景・目的
 DA変換器の構成
 - R-2R 電流源 DAC
- N進抵抗ラダーDACの構成
 - 抵抗ラダーを用いた電流分割
 - -N進抵抗ラダーを用いた構成
- 異なる分流比を持つ抵抗ラダーの接続
 接続の条件・手順

- DAC構成案と非線形性シミュレーション

異なる分流比の抵抗ラダーの接続

- 接続する抵抗 R_x
- 下位側
 - 分流比 定数 N_L
 - 基準抵抗 R_L
 - P点から見た抵抗 Z_L

- 上位側
 - 分流比 定数 N_H
 - 基準抵抗 R_H
 - Q点から見た抵抗 Z_H

接続の条件

- 接続の条件
 - 1. P点から右を見込んだ場合、N_H進抵抗ラダーの特性。
 - 2. Q点から左を見込んだ場合、上位側 $N_{\rm H}$ 進特性が崩れない。

$$\begin{cases} R_x + Z_{\rm H} = N_{\rm H} Z_{\rm L} \\ R_x + Z_{\rm L} = N_{\rm H} Z_{\rm H} \end{cases}$$

$$R_{\rm H} = \frac{N_{\rm L} - 1}{N_{\rm H} - 1} R_L, \qquad R_x = (N_{\rm H} - 1)(N_{\rm L} - 1)R_{\rm L}$$

19/30

- 研究背景・目的
 DA変換器の構成
 R-2R 電流源 DAC
- N進抵抗ラダーDACの構成
 抵抗ラダーを用いた電流分割
 N進抵抗ラダーを用いた構成
- 異なる分流比を持つ抵抗ラダーの接続

- 接続の条件・手順

- DAC構成案と非線形性シミュレーション

構成例

8-bit相当 2進-4進混成 抵抗ラダーDAC
 ▶ R_L = 3R_u, R_H = R_u, R_x = 9R_u

構成例

8-bit相当 2進-4進混成 抵抗ラダーDAC
 ▶ R_L = 3R_u, R_H = R_u, R_x = 9R_u

2進-4進-Unaryコード混成 DAC

下位側はR-2Rのまま、上位と4進部分の間を3R_u
 回路の面積はセグメント化 R-2Rと同等
 要: D₄, D₅ の2 bit 分の追加の温度計デコーダ

3-bit セグメント化 R-2R DACとの比較^{23/30}

DNLの計算

- 抵抗と電流源のみからなる線形回路モデルを仮定した モンテカルロシミュレーション
- シミュレーションセット数 3000回
- 単位抵抗R_uと単位電流Iに
 正規分布のばらつきを仮定
- 標準偏差σは平均値の1%

シミュレーションによるDNL標準偏差

シミュレーションによるDNL標準偏差

最大DNLについて

シミュレーションによるDNL標準偏差

27/30

• 4進部分を駆動するコードでのDNL

シミュレーションによるDNL標準偏差

28/30

• 4進部分を駆動するコードでのDNL

- 研究背景•目的 DA変換器の構成 - R-2R 電流源 DAC N進抵抗ラダーDACの構成 - 抵抗ラダーを用いた電流分割 -N進抵抗ラダーを用いた構成 • 異なる分流比を持つ抵抗ラダーの接続 - 接続の条件・手順 - DAC構成案と非線形性シミュレーション
 - 結論

- まとめ
 - 抵抗ラダーの分流特性をR-2Rラダーから変化させ、
 分流の比が一定でない抵抗ラダーを用いた場合でも
 DACが構成できる
 - 抵抗ラダーを用いたDACにおいても 上位ビットと下位ビットの中間にセグメント化が可能
 - 2進-4進-温度計コードの混成構成は、 従来のセグメント化 R-2R DACとほぼ同等面積・DNLで ゲインを大きくできる
 - モンテカルロシミュレーションによって、DNL標準偏差を確認し、 比較を行った
- 今後の検討課題
 - 周辺の回路を含めた設計を行い、その動的な特性を評価

質疑応答

- 回路規模というのは、抵抗・電流源の数という意味か。
 - A. そうです。 抵抗ラダー部については、上位側・下位側のすべて単位抵抗で構成 すると仮定して、チップ内の面積について述べました。
- 実際の電流源はどのように構成するのか。
 MOSのカレントミラーで構成します。

two-step segmentation

Figure 3.41. Conceptual schematic of a current steering segmented DAC.

F. Maloberti, Data Converters, 3.5.5 P127, Springer (2007).

DEM with Nested-Segment Structure^{34/30}

Fig. 1. Conventional DEM DAC with separate-segment structure.

TABLE I

MUX COUNT COMPARISONS FOR DEM DACS WITH DIFFERENT STRUCTURES

MSB	Seg.	SFDR	MUX Count			Seg.	SFDR	MUX Count		Seg.	SFDR	MUX Count
Bits	Ratio	(dB)	RRBS	GRTC	1	Ratio	(dB)	RRBS	GRTC	Ratio	(dB)	Proposed
2	2T+10B	66.99	6	6]	$2T+\ldots+2T$	69.21	36	36	2T+2T+8B	73.52	14
3	3T+9B	72.09	21	14]	3T++3T	74.29	84	56	3T+3T+6B	79.04	38
4	4T+8B	75.90	60	45	1	4T+4T+4T	77.81	180	135	4T+4T+4B	80.32	94
5	5T+7B	78.71	155	127]	5T+5T+2T	79.69	316	260	5T+5T+2B	80.46	222
6	6T+6B	80.27	378	255]	6T+6T	80.51	756	510	6T+6T	80.58	510

Wei Mao, "High Dynamic Performance Current-Steering DAC Design WithNested-Segment Structure", January 2018IEEE Transactions on Very Large Scale Integration (VLSI) Systems PP(99):1-5.

無限抵抗ラダーの合成抵抗の収束

R-2R DAC と Unary DACの比較

- 利点
 - 回路構成が単純 1段の増加=1bitの増加 - デコーダが不要
- 欠点
 - 素子誤差でDNLが劣化
 - 上位ビット変化タイミングにより グリッチが発生

- 利点
 - 1LSB変化=電流源1つの変化
 →グリッチが出にくい・単調性良
- 欠点
 - 要 温度計コードへの変換
 - M-bit DACに2^M-1個電流源
 →デコーダ・回路規模の増大