Input Signal and Sampling Frequencies Requirements for Efficient ADC Testing with Histogram Method

Yujie Zhao, A. Kuwana, S. Yamamoto, Y. Sasaki
H. Kobayashi, S. Katayama, J. Wei
T. Nakatani, K. Hatayama
K. Sato, T. Ishida,
T. Okamoto, T. Ichikawa

Division of Electronics and Informatics
Gunma University
ROHM Semiconductor
Outline

- Objective
- ADC Test with Histogram Method
- Input Sine Wave and Sampling Frequencies Relationship in ADC Histogram Test Method
 - Sine Wave Histogram and Waveform Missing
 - Golden Ratio Sampling
 - Metallic Ratio Sampling
 - Prime Number Ratio Sampling
- Conclusion
Outline

• Objective

• ADC Test with Histogram Method

• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Golden Ratio Sampling
 ➢ Metallic Ratio Sampling
 ➢ Prime Number Ratio Sampling

• Conclusion
Background

IoT era is coming!

ADC is a key component

◆ Analog signal

Sampling

◆ Digital signal

A/D Conversion

High quality & Low cost ADC test is required
SAR ADC linearity test takes a long time
- low-speed sampling
- high-resolution

Test cost is proportional to test time

This Work

ADC linearity test with histogram method:
Investigation of “high efficiency relationship” between input and sampling frequencies
Outline

• Objective

• ADC Test with Histogram Method

• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Golden Ratio Sampling
 ➢ Metallic Ratio Sampling
 ➢ Prime Number Ratio Sampling

• Conclusion
Histogram method (Ramp wave input)

- ADC output histograms for all bins are equal if ADC is perfectly linear
- Highly linear ramp signal generation is difficult (limitation up to 14-bit ADC)
Conventional Linearity Testing 2

Histogram method (Single sine wave input)

- Low distortion sine using an analog filter
- Number of samples is small around the middle of output range ➔ Many samples required (long test time)
DNL & INL

- Important ADC testing items

DNL : Difference between actual step width and ideal value

INL : Deviation from ideal conversion line

\[INL(k) = \sum_{i=1}^{k} DNL(i) \]
Outline

• Objective
• ADC Test with Histogram Method
 • Input Sine Wave and Sampling Frequencies Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Golden Ratio Sampling
 ➢ Metallic Ratio Sampling
 ➢ Prime Number Ratio Sampling
• Conclusion
Sine Wave Histogram

- Repetitive waveform sampled asynchronously
- Reconstruct a 1-period waveform
- Sampled histogram is compared with PDF.
- Histogram is obtained.
- DNL, INL are calculated.

PDF:
Probability Distribution Function

\[
p(v) = \frac{1}{\pi \sqrt{A^2 - v^2}}
\]

Number of Samples

Output Code
Waveform Missing

A large amount of data is required to reconstruct the waveform

Test time: long

Repetitive waveform sampled asynchronously

Reconstruct a 1-period waveform

Measured waveform

Sampling CLK

Waveform missing occurs at special ratio \(T_{CLK} / T_{SIG} \)
\[f_{CLK} \gg f_{sig} \]
\[f_{CLK} \approx \frac{1}{\alpha} f_{sig} \]
\[\alpha = 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \ldots, \frac{1}{6}, \ldots \]

Special ratio \(T_{CLK} \) and \(T_{sig} \), \(f_{CLK} \) and \(f_{sig} \)

\[f_{CLK} \approx f_{sig} \]

Yuto Sasaki, Yujie Zhao, Anna Kuwana and Haruo Kobayashi, "Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System", 27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018)
Waveform Missing for Saw Signal

Normal situation

Waveform Missing
Outline

• Objective
• ADC Test with Histogram Method
• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Golden Ratio Sampling
 ➢ Metallic Ratio Sampling
 ➢ Prime Number Ratio Sampling
• Conclusion
Golden Ratio: \[\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.618033988749895 = \varphi \]

The most beautiful ratio
Golden Ratio ϕ

$$f_{CLK} = \phi \times f_{sig}$$

$\phi = 1.6180339887…$

Proposal of sampling conditions for the highest waveform acquisition efficiency

Yuto Sasaki, Yujie Zhao, Anna Kuwana and Haruo Kobayashi, "Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System", 27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018)
Outline

• Objective
• ADC Test with Histogram Method
• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Golden Ratio Sampling
 ➢ Metallic Ratio Sampling
 ➢ Prime Number Ratio Sampling
• Conclusion
Metallic Ratio

Golden Ratio: \(\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.61803398874989.. = \phi\)

<table>
<thead>
<tr>
<th>n</th>
<th>Decimal</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>Golden Ratio</td>
</tr>
<tr>
<td>1</td>
<td>(\frac{1 + \sqrt{5}}{2}) = 1.6180339887…</td>
<td>Golden Ratio</td>
</tr>
<tr>
<td>2</td>
<td>1 + \sqrt{2} = 2.4142135623…</td>
<td>Silver Ratio</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{3 + \sqrt{13}}{2}) = 3.3027756377…</td>
<td>Bronze Ratio</td>
</tr>
<tr>
<td>4</td>
<td>2 + \sqrt{5} = 4.2360679774…</td>
<td></td>
</tr>
<tr>
<td>(\ldots)</td>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>(\frac{n + \sqrt{n^2 + 4}}{2})</td>
<td></td>
</tr>
</tbody>
</table>

Generalization of Golden Ratio
Histogram of Saw Signal

Total number of samples: M
ADC resolution: N.

ideal value $h_i(k) = \frac{M}{N}$, $k = 1, 2, 3, \ldots, N$

error $e(k) = \frac{N \cdot h(k)}{M} - 1$
RMS Error Calculation

Root mean square error between actual and ideal histograms

\[RMS = \sqrt{\frac{\sum(e(k))^2}{N}} \]
Outline

• Objective

• ADC Test with Histogram Method

• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Golden Ratio Sampling
 ➢ Metallic Ratio Sampling
 ➢ Prime Number Ratio Sampling

• Conclusion
RMS of Prime Number Sampling

\[f_{CLK} = f_{sig} \times RATIO \]

In contrast, Golden Ratio has a smaller RMS.

RATIO with two large prime numbers ⇒ Small RMS

Total number of samples: \(M = 65536 \)
RMS of Prime Number Sampling: **Big Number Case**

- **f_{CLK}**: Big prime number 997
- **f_{SIG}**: Some prime numbers 389, 599, 751, 853, 907, 953, 991

\rightarrow almost the same

Total number of samples: $M=65536$
Increasing N to 16384,
Bronze ratio result is better (RMS range is smaller)
Outline

• Objective
• ADC Test with Histogram Method
• Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 ➢ Sine Wave Histogram and Waveform Missing
 ➢ Golden Ratio Sampling
 ➢ Metallic Ratio Sampling
 ➢ Prime Number Ratio Sampling
• Conclusion
Conclusion

Golden Ratio sampling
Efficiency: high
Sampling frequency: low

Metallic ratio sampling
Efficiency: high
Sampling frequency: high

Prime number ratio sampling
Efficiency: Not good
Sampling frequency: low

Next work

- Like the golden ratio
 Find conditions for efficient sampling
 at a specific location
 (ADC resolution N=256, 512, 1024, 2048, 4096)
Thanks for your attention.