Input Signal and Sampling Frequencies Requirements for Efficient ADC Testing with Histogram Method

Yujie Zhao, A. Kuwana, S. Yamamoto, Y. Sasaki H. Kobayashi, S. Katayama, J. Wei T. Nakatani, K. Hatayama K. Sato, T. Ishida, T. Okamoto, T. Ishida, Division of Electronics and Informatics Gunma University ROHM Semiconductor

- Objective
- ADC Test with Histogram Method
- Input Sine Wave and Sampling Frequencies Relationship in ADC Histogram Test Method
 - Sine Wave Histogram and Waveform Missing
 - ➢Golden Ratio Sampling
 - Metallic Ratio Sampling
 - Prime Number Ratio Sampling
- Conclusion

- Objective
- ADC Test with Histogram Method
- Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 Sine Wave Histogram and Waveform Missing
 Golden Ratio Sampling
 Metallic Ratio Sampling
 - Prime Number Ratio Sampling
- Conclusion

High quality & Low cost ADC test is required

Research Objective & Approach

SAR ADC linearity test takes a long time

- low-speed sampling
- high-resolution
 - Test cost is proportional to test time

This Work

- Objective
- ADC Test with Histogram Method
- Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 Sine Wave Histogram and Waveform Missing
 Golden Ratio Sampling
 Metallic Ratio Sampling
 Prime Number Ratio Sampling
- Conclusion

Conventional Linearity Testing 1

■Histogram method (Ramp wave input)

- ADC output histograms for all bins are equal if ADC is perfectly linear
- Highly linear ramp signal generation is difficult (limitation up to 14-bit ADC)

Conventional Linearity Testing 2

Histogram method(Single sine wave input)

- Low distortion sine using an analog filter
- Number of samples is small around the middle of output range
 Many samples required (long test time);

DNL & INL

- Important ADC testing items
 - DNL : Difference between actual step width and ideal value
 - INL : Deviation from ideal conversion line

$$INL(k) = \sum_{i=1}^{k} DNL(i)$$

- Objective
- ADC Test with Histogram Method
- Input Sine Wave and Sampling Frequencies Relationship in ADC Histogram Test Method
 - Sine Wave Histogram and Waveform Missing
 - ➢Golden Ratio Sampling
 - ➢ Metallic Ratio Sampling
 - Prime Number Ratio Sampling
- Conclusion

Sine Wave Histogram

Waveform Missing

A large amount of data is required to reconstruct the waveform - Test time: long

Waveform Missing

Yuto Sasaki, Yujie Zhao, Anna Kuwana and Haruo Kobayashi, "Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System", 27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018)

Waveform Missing for Saw Signal

- Objective
- ADC Test with Histogram Method
- Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 - ➢Sine Wave Histogram and Waveform Missing
 - ➢Golden Ratio Sampling
 - Metallic Ratio Sampling
 - Prime Number Ratio Sampling
 - Conclusion

Golden Ratio

Golden Ratio: $\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.618033988749895 = \varphi$

The most beautiful ratio

Golden Ratio Sampling

Golden Ratio φ

Proposal of sampling conditions for the highest waveform acquisition efficiency

Yuto Sasaki, Yujie Zhao, Anna Kuwana and Haruo Kobayashi, "Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System", 27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018)

- Objective
- ADC Test with Histogram Method
- Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 - ➢Sine Wave Histogram and Waveform Missing
 - ➢Golden Ratio Sampling
 - Metallic Ratio Sampling
 - Prime Number Ratio Sampling
 - Conclusion

Metallic Ratio

Golden Ratio: $\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.61803398874989 = \varphi$					
	n		Decimal		
	0	1			
	1	$\frac{1+\sqrt{5}}{2}$	1.6180339887	Golden Ratio	
	2	$1 + \sqrt{2}$	2.4142135623	Silver Ratio	
	3	$\frac{3+\sqrt{13}}{2}$	3.3027756377	Bronze Ratio	
	4	$2 + \sqrt{5}$	4.2360679774		
	n		$\frac{n+\sqrt{n^2+4}}{2}$		

Generalization of Golden Ratio

Histogram of Saw Signal

ideal value
$$h_i(k) = \frac{M}{N}, k = 1, 2, 3, \dots, N$$
 error $e(k) = \frac{N \cdot h(k)}{M}$

RMS Error Calculation

Total number of samples: M=65536

 $\sum (e(k))$

RMS =

Root mean square error between actual and ideal histograms

- Objective
- ADC Test with Histogram Method
- Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 - Sine Wave Histogram and Waveform Missing
 - ➢Golden Ratio Sampling
 - Metallic Ratio Sampling
 - Prime Number Ratio Sampling
- Conclusion

RMS of Prime Number Sampling^{23/27}

RATIO with two large prime numbers \Rightarrow Small RMS In contrast, Golden Ratio has a smaller RMS

RMS of Prime Number Sampling: Big Number Case

RMS Comparison

Increasing N to 16384, Bronze ratio result is better (RMS range is smaller)

- Objective
- ADC Test with Histogram Method
- Input Sine Wave and Sampling Frequency Relationship in ADC Histogram Test Method
 - Sine Wave Histogram and Waveform Missing
 - ≻Golden Ratio Sampling
 - >Metallic Ratio Sampling
 - Prime Number Ratio Sampling
- Conclusion

Conclusion

Golden Ratio sampling Efficiency: high Sampling frequency: low

Metallic ratio sampling Efficiency: high Sampling frequency: high

Prime number ratio sampling Efficiency:Not good Sampling frequency: low

Next work

 Like the golden ratio
Find conditions for efficient sampling at a specific location
(ADC resolution N=256,512,1024,2048,4096)

Thanks for your attention.

