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1. Research Background
Motivation on High-Order Physical Systems

• Behaviours of complex functions in time and 
frequency domains are not analysed in detail.

• Limitations of loop gain, differential equations, and 
heat equations are not pointed out.

• Superposition theorems are not widely used in 
large-, medium-, and small-scale physical systems.

• Properties of positive and negative impedances, 
resistance in mechanical systems are not
introduced.

• Relationship between periodic motion systems and 
positive feedback systems is not well investigated.
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1. Research Background
Objectives of This Study

• Investigation of some limitations of differential 
equations and loop gain in motion models  

• Study of behaviors of various different scale 
systems: planets, mechanical systems, and 
electronic systems

• Models of periodic motion systems using complex 
functions Positive feedback systems
 Ringing test for high-order electronic systems 
such as transmission lines, passive and active filters.
 Observation of phase margin at unity gain 
determines operating regions of high-order systems



 Three superposition formulas for physical systems.
• Mechanical superposition formula
• Electrical superposition formula
• Multi-source superposition formula
 Proposed motion models for various different scale 

physical systems: 
• Earth’s motions (large-scale), 
• Simple pendulum systems (regular-scale), and 
• Electronic systems (small-scale)
 Investigation of positive feedback systems
 Ringing test for mechatronic systems such as 

transmission lines, passive and active low-pass filters 
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Contributions of This Work
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1. Research Background
Limitations of Differential Equations and Loop Gain

Nyquist plot of loop gain
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Fourth-order differential equation
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2. Proposed Superposition Formulas
Superposition Formulas for Mechatronic Systems
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2. Proposed Superposition Formulas
Time and Frequency Responses of Systems

Time response of high-order system (single harmonic input wave)
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High-order mechatronic system

Vout(t)=Acos(ω0t+Ѳ0)H(ω0)

Frequency response of high-order system (all frequency domains)

(time domain) (time domain)
(all frequency domains)

Single-harmonic
output signal

Single-harmonic
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2. Proposed Superposition Formulas
Self-loop Function in A Transfer Function
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Transfer function of high-order system

o Magnitude-frequency plot
o Angular-frequency plot 

o Polar chart  Nyquist chart

o Magnitude-angular diagram  Nichols diagram

Bode plots
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2. Proposed Superposition Formulas
Periodic Motions and Helix Waves

Types of breaking forces Value

A covalent bond 1600 pN

A noncovalent bond 160 pN

A weak bond 4 pN

Double helix waves in DNA

Motion of electrons in the crystal structure 
of silicon atoms

The Earth’s rotation Motion of electronic particles

Breaking forces in chemical bonds
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2. Proposed Superposition Formulas
Characteristics of Helix Functions

  0 0( )   pS t Ahe t   0 0( )  NS Ahet t
Positive helix function Negative helix function
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2. Proposed Superposition Formulas
Spectra of Common Analog Signals

Signal type Time domain Half-side spectrum
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3.Motion Models for Large-Scale Systems
Behaviors of the Earth’s Motions

Motion of the Earth on its orbitMotion of the Earth on its axis

   0 0 heV t Ahe t 

A is radius of the Earth 
Frequency f0 is 11.5 µHz, (or a period of 86400 s)

Motion 
wave
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3.Motion Models for Large-Scale Systems
Motion Model of the Earth on Its Orbit

Transfer function

Apply superposition at the node Xout,Model of the Earth and the Sun
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3.Motion Models for Large-Scale Systems
Behaviors of a 2nd -Order Mechanical System

Transfer function
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Positive feedback system

A is radius of the Earth’s orbit, and 
frequency f0 is 31.5 nHz
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4. Motion Models for Regular-Scale Systems
Analysis of a 2nd -Order Pendulum System
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Loop gain cannot be applied for a high-order mechanical system.
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4. Motion Models for Regular-Scale Systems
Behaviors of a 2nd -Order Pendulum System
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Harmonic motion of pendulum system

Here, l = 1m, m = 1 kg, g = 9.8 m/s2
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4. Motion Models for Regular-Scale Systems
Analysis of a 4th -Order Pendulum System
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4. Motion Models for Regular-Scale Systems
Behaviors of a 4th -Order Pendulum System
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5. Motion Models for Small-Scale Systems
Analysis of a 2nd -Order Passive Low-Pass Filter
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5. Motion Models for Small-Scale Systems
Measurement Results of a 2nd -Order Passive LPF

Nichols plot of self-loop function

Bode plot of transfer functionSimulated transient response

Overshoot

Case Over-
damping

Critical 
damping

Under-
damping

Magnitude 
(transfer 
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-12 dB -6 dB 1 dB

Phase 
margin 

(self-loop 
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80o

(observed 
at 100o)

60o
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at 120o)

31o
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at 149o)

149o PM
31o

120o
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80o
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1 dB
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5. Motion Models for Small-Scale Systems
Analysis of Schematic Model of Transmission Line

Simplified model of coaxial line Parameters of the schematic model

Parameter Value Parameter Value

Metal width (W) 0.71 mm Substrate thickness (H) 2

Trace length (L) 40 mm Dielectric constant (εr) 4.6

Metal thickness (Tm) 35 mm Loss tangent (Tan) 0.01

Metal resistivity 17.2 nΩ Frequency 1.5 GHz

Surface roughness 0.1 um Characteristic Impedance 50 Ω

Variable Value Variable Value

La 0.25 nH Z0 50 Ω

Ra 1.82 mΩ Loss 1.6 mdB

Ca 0.1 pF Skin depth 1.7 um

Ga 6.81 uM/Ω Delay 0.2 ns

Parameters of the physical model



26

5. Motion Models for Small-Scale Systems
Ringing Test for Coaxial Line

Physical model of transmission line General characteristic impedance
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5. Motion Models for Small-Scale Systems
Simulation Results of Coaxial Line

Bode plot of transfer function
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5. Motion Models for Small-Scale Systems
Analysis of Fourth-Order Active Low-Pass Filter

Schematic of Akerberg-Mossberg LPF
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5. Motion Models for Small-Scale Systems
Simulation Results of 4th -Order Active LPF

Nichols plot of self-loop function

Bode plot of transfer function
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6. Conclusions

This work:
• Study of limitations of differential equations and loop gain.
• Three superposition formulas are also introduced for deriving 

the transfer functions in physical systems.
• Investigation of behaviors of physical systems such as the 

Earth’s motions, pendulum systems, transmission lines, passive 
and active low-pass filters.
 Periodic motion networks are positive feedback systems.
 Observation of self-loop function can help us  optimize the 

behaviors of high-order mechatronic systems easily.
Future work:
• Stability test for dynamic load and other mechatronic systems.
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