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1. Research Background
Motivation on High-Order Physical Systems

e Behaviours of complex functions in time and
frequency domains are not analysed in detail.

* Limitations of loop gain, differential equations, and
heat equations are not pointed out.

* Superposition theorems are not widely used in
large-, medium-, and small-scale physical systems.

* Properties of positive and negative impedances,
resistance in mechanical systems are not
introduced.

* Relationship between periodic motion systems and

positive feedback systems is not well investigated.
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1. Research Background
Objectives of This Study

ﬂvestigation of some limitations of differential \
equations and loop gain in motion models
 Study of behaviors of various different scale

systems: planets, mechanical systems, and
electronic systems

* Models of periodic motion systems using complex
functions = Positive feedback systems

- Ringing test for high-order electronic systems
such as transmission lines, passive and active filters.

— Observation of phase margin at unity gain
determines operating regions of high-order systems
3




1. Research Background
Contributions of This Work

Three superposition formulas for physical systems.
Mechanical superposition formula

Electrical superposition formula

Multi-source superposition formula

Proposed motion models for various different scale
physical systems:

Earth’s motions (large-scale),

Simple pendulum systems (regular-scale), and
Electronic systems (small-scale)

Investigation of positive feedback systems

Ringing test for mechatronic systems such as
transmission lines, passive and active low-pass filters4



1. Research Background
Limitations of Differential Equations and Loop Gain

Fourth-order differential equation Ringing in mechatronic systems
aoy"" + alym + azy" + a3y' + a,y = O, <=~ Overshoot -
» Numerical methods don’t solve the [ St::::tlty J
high-order differential equations.
- They only approximate the solutions >
to them. Undershoot

> Loop gain cannot be used to do the ringing test for mechatronic systems.

Gain reduction in an inverting amplifier Nyquist plot of loop gain
A Transfer function
| A4 1
i Loop Gain H:HAB“E
o AP : loop gain
BW =100 Hz GBW =10 MHz

(Unclear operating region) 5
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2. Proposed Superposition Formulas
Superposition Formulas for Mechatronic Systems

Force conservation law Mechanical superposition formula
m q k
Z out Z(—+CZ+J®mZ) Xout ((D)Z(‘FC +](0m )
=1 /=1 JO
Current conservation law Electrical superposition formula
m q m q
[ (0)= [Ou + joC .
Z‘ (); t Z[k JoL; kj { Z(ﬁ Jjol,
Multi-source superposition formula
V() Vo(m) Zn:iJan: ! :zn: erlai(co)—lgi(oo)
i=1 Z,- =17 4 1 i=1 Zi
S1 n ]
it Z i

+joanj ®



2. Proposed Superposition Formulas
Time and Frequency Responses of Systems

Single-harmonic  High-order mechatronic system  single-harmonic

input signal Input H(w) Output output signal
—> —>
Vin(t)=Acos(w)t+0,) V(o) V(@) Youl(=Acos(et+Oy)H(w)
in out
(time domain) (time domain)

(all frequency domains)
Frequency response of high-order system (all frequency domains)

V,.(0) b (jo) +b, (jm)"_1 +...+b,_ (jo)+b,
V,(0) q (joo) +a (joo)"_1 +..ta, (jo)+a, ,
Time response of high-order system (single harmonic input wave)
b, (jo,) +b (]
I/out (t) — I/m (t) ¥ (](DO )n 1 (](DO )n—l .
ay(jo,) +a (jo,) +..+a,, (jo,)+a,

()= ‘H(a)o)‘Acos(a)Ot+OO + LH(@O));

H(w)=

n—1

+.+b, (jo, )+b,

>

=V

out 8



2. Proposed Superposition Formulas
Self-loop Function in A Transfer Function

Transfer function of high-order system 4(®) : Numerator function
b(jo)" +..+b _(jo)+b, H(w) :Transfer function

H(w)=—7"7, .
a,(jo)" +..+a, (jo)+a, L(®) : Self-loop function
Simplified transfer function Variable: angular frequency (w)
V (o A(w
H(o) = I;: ((00)) = 1+ i (()0) »  Graph signal of negative feedback system
Relationship between output and input A(o)
V(@) = )| V(@) - 227 (@)
A(®)
L(w)
o Polar chart 2 Nyquist chart A(0)

o Magnitude-frequency plo
o Angular-frequency plot

o Magnitude-angular diagram = Nichols diagram

t
} Bode plots  Negative feedback system
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2. Proposed Superposition Formulas
Periodic Motions and Helix Waves

The Earth’s rotation Motion of electronic particles Double helix waves in DNA

(a) Negative helix wave (b) Positive helix wave

Motion of electrons in the crystal structure
of silicon atoms Breaking forces in chemical bonds

Types of breaking forces| Value

A covalent bond 1600 pN

A noncovalent bond 160 pN

A weak bond 4 pN
10




2. Proposed Superposition Formulas
Characteristics of Helix Functions

Positive helix function Negative helix function

S, ()= Ahe(w,t +6,) Sy (1) = Ahe(—wyt —6,)
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2. Proposed Superposition Formulas
Spectra of Common Analog Signals

Signal type Time domain Half-side spectrum
Positive helix Ahe(®,t+0,) A2 (@)
Negative helix Ahe(—w,t—0,) PN

Cosine Acos(w,t+9,) Af J(o0Ty+6,)
Sine Asm(w,t+0,) A*f ¢ (o003
sauare | - {ETEE e g

12
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3.Motion Models for Large-Scale Systems
Behaviors of the Earth’s Motions

Motion of the Earth on its axis Motion of the Earth on its orbit

Motion - (1) = dhe(wyt +6,)

wave

A is radius of the Earth

Frequency f, is 11.5 pHz, (or a period of 86400 s) 14



3.Motion Models for Large-Scale Systems
Motion Model of the Earth on Its Orbit

Loop gain cannot be applied for a large-scale physical system.
Model of the Earth and the Sun Apply superposition at the node X, ,,
{jcom+c+.k})(ow(co) ={c+.k})(m (0);
JO JO
Transfer function

Xout((o) B b,jo+1

X, (0)  1+q,(jo) +a,jo

H(w)=

Self-loop function
Mechanical superposition formula

n g Llow)=a ja)2+aja);
;En(m)zzz;ﬁ;m(w) ( ) V\(;PEere,) |

c
m q b =—; =—; = —
X, ((D)Z(ﬁﬂz +joam,]:X0m(oa)Z(lf—p+cp +joomp] "k “ k “ k

o\ JO



3.Motion Models for Large-Scale Systems
Behaviors of a 2"d -Order Mechanical System

When, g, :% Relationship between output and input
X, (0)=X, (0)+—0’X,, (0);
h=S_,=5_ k
R Graph signal of positive feedback system
: Kin(®) Xoul(®)
Transfer function > 1 }
X (O 1
H ((D) _ out ( ) _

Self-loop function Positive feedback system

m Motion wave V, (¢)= Ahe(wyt+6,)
L ((D) =—0, A is radius of the Earth’s orbit, and
k frequency f, is 31.5 nHz

16
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4. Motion Models for Regular-Scale Systems
Analysis of a 2"d -Order Pendulum System

Loop gain cannot be applied for a high-order mechanical system.

Model of pendulum system Apply superposition at the node X,

Transfer function

Xout(w) _byjo+l
X, (o) 1+L(w)
Self-loop function

H(w)=

L(o)=a,(jo) +a,jo;

Where,

Mechanical superposition formula c m c

n (1 ¢ (k bozz;aozk;alzz
X, ((0)2(—1+cl +joaml] =X, (m)Z(—p+cp +joomp]

1\ JO pe1\ JO



4. Motion Models for Regular-Scale Systems
Behaviors of a 2"d -Order Pendulum System

m Graph signal of positive feedback system
When, a,=—
k Xiﬂ(m) Xoul(®)
C C — : >
b() :—:a1 :—:O;
k k
m 2 <
The simplified transfer function | K
H ( ) X out (0)) | Positive feedback system
M) = —— *
Xl.n (Q)) 1— aO(x)2 " Harmonic motion of pendulum system

Relationship between output and input

X, (0)=X, (0)+Zo’X,, (0);

out k out

Here, |=1m, m=1kg, g =9.8 m/s?
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4. Motion Models for Regular-Scale Systems
Analysis of a 4t" -Order Pendulum System

Model of double-pendulum system

Apply superposition at each node, we get

Ao+ (0) = X, o)
Jjo Jjo Jjo
Emjor e 1 0) =50, (0
Jjo Jjo Jjo
(c+kl+@2+k3jX (0)
jo
Transfer functions and self-loop function Pascal’s Triangle
¥ .
H, ((D) = ((D) = . \4 boj_w—:bl 2 E 2nd 1 2 1
X, ((D) 1+a, (](o) +al(](o) +a, (]0)) +a,jo
H, (o) = X, () _ b, (joa)3 +b, (jo))2 +b, jo+ b, |3 1 3 3 1
i X, (0)  1+a,(jo) +a (jo) +a, (jo) +ajo
4th 1 4 6 4 1

L(®)=aq, (j(o)4 +a, (joa)3 +a, (joa)2 +a, jo;




4. Motion Models for Regular-Scale Systems
Behaviors of a 4t" -Order Pendulum System

Transfer function of 1%t pendulum
H, (o) = b, jo+b,
1

1+a, (]'0))4 +a, (jOO)3 +a, (joo)2 ta,jo
As c =0, then b, a,, a; are neglected.

bl
P
H, (w):);uﬂ((w): 1"'%032 )
() | G0
1+ a,0°
Relationship between output and input
b a,m’
X (o)=—- X (0)+—2—X (o)
outl( ) 1+a00)4( m( ) bl out( )]

Graph signal of positive feedback system

Variables of double-pendulum system

Var Value Var Value
b kyc b (k+k, ) (k, +k, +k,)
0 kky +kyky + ks, 5 kk, + ok + ko,

b ky (ky +ky +ky) 3 mm,
1 kek, + ke ke, + Kk, 0 kik, + koky + sk,
b kc 3 (m1 + mz)c
2 kke, + ok + ks, 1 ki, + kk, + k. k,
b cz+ml(kl+k2+k3) a ml(k2+k3)+m2(k1+k2)+c2
3 ke, + ke + ek, 2 kk, + Kk, + ok,
b c(2k, + 2k, + ky) 3 (k,+2k,+k;)c
4 | kk, +k,ky + k;k, 3 ko, + ko + ke,

Harmonic motion of pendulum system

le(m) b Xoutl (0))
> ltao [ TP Here,
l,=1,=1m
e m,=m, =1Kkg
a, (
b g = 9.8 m/S2

21
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5. Motion Models for Small-Scale Systems
Analysis of a 2"d -Order Passive Low-Pass Filter

Loop gain cannot be applied for a passive filter.
Schematic of RLC low-pass filter Electrical superposition formula

Vin((l)) R _](.t)L Vout(m) N y
I (w)=)> 1 (o
AN T &)= 2, ()
Ll @Y e rjec =7, (0)Y] s jac
joC T "SR oL, Y)Y S R, oL, !

= Apply superposition at the node V_,,,
Implemented circuit of RLC LPF 1 1
( )( +jcoC]=Vin (o)

4 ;
R+ joL

out

R+ joL
Transfer function and self-loop function
Voul®) 1
V(o) 1+L(0)

H(w)=

L(w)=a,(jo) +a,jo;
a, =LC;CZ1 =RC; 23



5. Motion Models for Small-Scale Systems
Measurement Results of a 2"d -Order Passive LPF

Simulated transient response

,,,,,,

") Overshoot
Case Over- Critical Under-
damping | damping | damping
Magnitude
(transfer -12dB -6 dB 1dB
function)
Phase 80° 60° 310
(stlirﬁ)l 2 (observed | (observed | (observed
P at100°) | at120°) | at 1499

function)

Bode plot of transfer function

1dB

e -6dB

-12 dB

Nichols plot of self-loop function

100° PM 1490 PM
) ) 600 o 310

PM 120°
80°
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5. Motion Models for Small-Scale Systems
Analysis of Schematic Model of Transmission Line

Simplified model of coaxial line

Parameters of the schematic model

ppressasssealy et R —— Variable Value Variable Value
(S n = SN L, 0.25nH Z, 50 Q
. e | Ra | 182m0 loss | 1.6 mdB
. . L';-_;,., o C, 0.1 pF Skin depth | 1.7 um
AR ‘ , ATt |G, |6.81uM/Q| Delay | 0.2ns
Parameters of the physical model
Parameter Value Parameter Value
Metal width (W) 0.71 mm Substrate thickness (H) 2
Trace length (L) 40 mm Dielectric constant (g, ) 4.6
Metal thickness (T ) 35 mm Loss tangent (Tan) 0.01
Metal resistivity 17.2 nQ Frequency 1.5 GHz
Surface roughness 0.1um Characteristic Impedance 50 Q
25




5. Motion Models for Small-Scale Systems
Ringing Test for Coaxial Line

Physical model of transmission line General characteristic impedance
, _ [RrjeL, _ (L,
" \G, +joC, \C~’

Apply superposition at the node X

out’

1 1 1
V 0 =V (o :
"”f( )(RS+ZO+RL] ’”( )RS+ZO

Ringing test for the coaxial line  Transfer function and self-loop function

Ry OBEINE . s s H (o) V(@) 1 ;
Vin(®) S 3 V(o) 1+L(o)
“ = R + joL
I'L L S \/ :

— — — — L

26



5. Motion Models for Small-Scale Systems
Simulation Results of Coaxial Line

Simulated transient response

......

“Overshoot
Case Over- Critical Under-
damping | damping | damping
Magnitude
(transfer -6 dB -1dB 12 dB
function)
Phase 80° 60° 110
(stlirﬁ)l : (observed | (observed | (observed
99P | 3t100°) | at120°) | at 169°)
function)

Bode plot of transfer function

12dB ®

-1dB
e

6d ©

Nichols plot of self-loop function

100° 120° 169°
PM ° °
800 PM P'V'o
60° 11
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5. Motion Models for Small-Scale Systems
Analysis of Fourth-Order Active Low-Pass Filter

Schematic of Akerberg-Mossberg LPF  Apply superposition at each node,

V .(o
VH(L+L+jcoC3+L]:E—V,[L+]‘mc3)— o ( );
R Ry

Ve (@ 1 V,
L+L+jcoC1+L = i ( )—VB —+ joC, |-=5;
R R R R, R,

1 2 6 1

RL'F]'COCE] :%_VDjmcz; VB = 2VAA(O)); VG - 2VCA(0));

3

_+_] - %_%; » =2V, A(w)V,,. (0) =2V, A(o);

5 4

R

5

7 12 Rl2

1 . 14 )
Eﬁjmq):é_ywmqﬁn=znAmm

1+1):Km«®_V

£V =2V, A(w);

RIO Rll Rll 10
Re, i
Transfer function and self-loop function
H(o)= 1+§0((,0) L(0)=a, (jo)' +a,(jo) +a,(jo) +a,jo; )



5. Motion Models for Small-Scale Systems
Simulation Results of 4" -Order Active LPF

Simulated transient response

Overshoot
Case Over- Critical Under-
damping | damping | damping
Magnitude
(transfer 12 dB 20 dB 27 dB
function)
Phas? 72° 67° 57°
(stlirﬁ)l 2 (observed | (observed | (observed
9P | St108°) | at113°) | at 1239)
function)

Bode plot of transfer function

e 27dB

® 20dB
12dB ®

° 2dB

Nichols plot of self-loop function

108° 123°
PV © e©113° o
790 PM PM
67° 57°
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6. Conclusions

This work:
» Study of limitations of differential equations and loop gain.

* Three superposition formulas are also introduced for deriving
the transfer functions in physical systems.

* Investigation of behaviors of physical systems such as the
Earth’s motions, pendulum systems, transmission lines, passive
and active low-pass filters.

=> Periodic motion networks are positive feedback systems.

= Observation of self-loop function can help us optimize the
behaviors of high-order mechatronic systems easily.

-=>Future work:

 Stability test for dynamic load and other mechatronic systems.
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