C1: Analog & Mixed-Signal 13:30-14:00 Oct. 27, 2021 (Wed)

Invited Paper

Classical Mathematics and Analog / Mixed-Signal IC Design

<u>Haruo Kobayashi</u>, X. Bai, Y. Zhao, S. Yamamoto, D. Yao M. Hirai, J. Wei, S. Katayama, A. Kuwana

Division of Electronics and Informatics Gunma University

Kobayashi Lab. Gunma University

Contents

- Statement of This Paper
- DAC Architectures based on Fermat Polygonal Number Theorem
- DAC Architectures based on Goldbach Conjecture for Prime Numbers
- DAC Architectures with Gray-code Input
- Waveform Acquisition with Metallic Ratio Equivalent-Time Sampling
- Efficient ADC Testing with Histogram Method
- Conclusion

Contents

• <u>Statement of This Paper</u>

- DAC Architectures based on Fermat Polygonal Number Theorem
- DAC Architectures based on Goldbach Conjecture for Prime Numbers
- DAC Architectures with Gray-code Input
- Waveform Acquisition with Metallic Ratio Equivalent-Time Sampling
- Efficient ADC Testing with Histogram Method
- Conclusion

[1] (invited) H. Kobayashi, Y. Sasaki, H. Arai, D. Yao, Y. Zhao, X. Bai, A. Kuwana,

"Unified Methodology of Analog/Mixed- Signal IC Design Based on Number Theory",

IEEE 14th International Conference on Solid-State and Integrated Circuit Technology, Qingdao, China (Nov. 2018).

[2] (Invited) H. Kobayashi, H. Lin,

"Analog / Mixed-Signal Circuit Design Based on Mathematics",

IEEE 13th International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, China (Oct. 2016).

Our Statement

Beautiful mathematics

good analog/mixed-signal circuit

Besides transistor level design

- Integer theory
- Coding theory
- Control theory
- Statistics
- Modulation
- Signal processing algorithm

Enhance analog/mixed-signal circuit performance

Integer Theory and Electronic Circuit Design

Many interesting properties of Integers

Currently No Link

Electronic circuit designs

Our research here makes their links !

Carolus Fridericus Gauss (1777-1855)

Integer theory is Queen of Mathematics

Contents

Statement of This Paper

DAC Architectures based on Fermat Polygonal Number Theorem

- DAC Architectures based on Goldbach Conjecture for Prime Numbers
- DAC Architectures based on Non-Uniform Current Resistive-Ladder
- DAC Architectures with Gray-code Input
- Waveform Acquisition with Metallic Ratio Equivalent-Time Sampling
- Efficient ADC Testing with Histogram Method

Conclusion

[3] X. Bai, D. Yao, Y. Du, M. T. Tran, A. Kuwana, H. Kobayashi, K. Kubo, "Design of Digital-to-Analog Converter Architectures Based on Polygonal Numbers", International Conference on Analog VLSI Circuits, Bordeaux, France (Oct. 2021)
[4] Y. Du, X. Bai, M. Hirai, S. Yamamoto, A. Kuwana, H. Kobayashi, K. Kubo, "Digital-to-Analog Converter Architectures Based on Polygonal and Prime Numbers", 17th International SOC Design Conference, Yeosu, Korea (Oct. 2020)

DACs are Everywhere !

Communication equipment

Electronic measuring instrument

Audio systems

7/80

New configurations of DAC

Polygonal number DAC

N=3. 4. 5.

Triangular number DAC

8/80

What is Polygonal Number?

Square numbers.

Hexagonal numbers.

Fermat Polygonal Number Theorem

Any natural number

expressed by

Sum of **N** N-angular numbers

French mathematicians

Conjecture

Pierre de Fermat 1607 – 1665

Proved in 1813

Augustin-Louis Cauchy 1789 –1857

Triangular Number Case

	Any natural number			Sum o	f 3 trian	3 triangular numbers			
1	3	6	10		expressed	d by			
•	•••								
		1:	1	16:	1+15	31:	3+28	46:	1+45
		2:	1+1	17:	1+1+15	32:	1+3+28	47:	1+1+45
		3:	3	18:	3+15	33:	6+6+21	48:	3+45
		4:	1+3	19:	1+3+15	34:	6+28	49:	1+3+45
		5:	1+1+3	20:	10+10	35:	1+6+28	50:	1+21+28
		6:	6	21:	21	36:	36	51:	15+36
		7:	1+6	22:	1+21	37:	1+36	52:	1+6+45
		8:	1+1+6	23:	1+1+21	38:	1+1+36	53:	10+15+28
		9:	3+6	24:	3+21	39:	3+36	54:	3+6+45
		10:	10	25:	1+3+21	40 :	1+3+36	55:	55
		11:	1+10	26:	1+10+15	41:	3+10+28	56:	1+55
		12:	1+1+10	27:	6+21	42:	6+36	57:	1+1+55
		13:	3+10	28:	28	43:	1+6+36	58:	3+55
		14:	1+3+10	29:	1+28	44:	6+10+28	59:	1+3+55
		15:	15	30:	1+1+28	45:	45	60 :	15+45

Proposed Triangular Number DAC

13/80

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ...n(n+1)/2

Vout1/V = R/(2R + 3R + 4R + 5R + 6R + 7R + 8R + 9R + 10R + 11R + 12R + 13R + 14R + 15R + R)

Vout1=I*R/121

14/80

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ...n(n+1)/2

Vout10/V=R/(5R+6R+7R+8R+9R+10R+11R+12R+13R+14R+15R+R)

Vout10=10I*R/121

15/80

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ...n(n+1)/2

=11I*R/121

16/80

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ...n(n+1)/2

Vout15/V=R/(6R+7R+8R+9R+10R+11R+12R+13R+14R+15R+R)

Vout15=15I*R/121

17/80

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ...n(n+1)/2

=**16**I*R/121

18/80

Triangular Number: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, ...n(n+1)/2

=**53**I*R/121

Three Switch Arrays and Decoder

19/80

Contents

Statement of This Paper

DAC Architectures based on Fermat Polygonal Number Theorem

DAC Architectures based on Goldbach Conjecture for Prime Numbers

- DAC Architectures with Gray-code Input
- Waveform Acquisition with Metallic Ratio Equivalent-Time Sampling
- Efficient ADC Testing with Histogram Method
- Conclusion

[5] X. Bai, Y. Du, M. T. Tran, A. Kuwana, H. Kobayashi,

"Digital-to-Analog Converter Architectures Based on Goldbach Conjecture for Prime Numbers in Mixed-Signal ULSI", 30th International Workshop on Post-Binary ULSI Systems (May 2021).

Research Objective

- Prime number DAC architecture with only 2 current sources (minimum analog circuitry) for any resolution
 Suitable for advanced digital-oriented CMOS ULSI.
- Composed of a prime number weighted resistor network,
 - 2 current sources, 2 switch arrays, a decoder.

Goldbach's Conjecture

All even numbers can be represented by sum of two prime numbers.

+	2	3	5	7	11	13	17	19	
2	4	5	7	9	13	15	19	21	
3	5	6	8	10	14	16	20	22	
5	7	8	10	12	16	18	22	24	
7	9	10	12	14	18	20	24	26	
11	13	14	16	18	22	24	28	30	
13	15	16	18	20	24	26	30	32	
17	19	20	22	24	28	30	34	36	
19	21	22	24	26	30	32	36	38	

Prime number

Christian Goldbach 1690-1764

Not proven yet !

Prime number

Prime numbers:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29,

All even numbers are represented by two prime numbers

2:	2	32:	13+19
4:	2+2	34:	17+17
6:	3+3	36:	17+19
8:	3+5	38:	19+19
10:	3+7	40:	17+23
12:	5+7	42:	19+23
14:	7+7	44:	13+31
16:	5+11	46:	23+23
18:	7+11	48:	19+29
20 :	7+13	50:	19+31
22:	11+11	52:	23+29
24:	11+13	54:	23+31
26 :	13+13	56:	19+37
28:	11+17	58:	29+29
30:	13+17	60 :	29+31

23/80

Digital Input with Sum of 2 Prime Numbers

All the digital inputs of DAC can correspond to an even number by sum of two prime numbers.

	_			
,	0 :0=0+0	16 :32=13+19→16	<mark>32</mark> :64=23+41→32	48 :96=43+53→48
	1 :2=2+0→1	17 :34=17+17→17	<mark>33</mark> :66=23+43→33	49 :98=31+67→49
	2: 4=1+3→2	18 :36=17+19→18	<mark>34:</mark> 68=31+37→34	50 :100=41+59→50
	3 :6=3+3→3	19 :38=19+19→19	<mark>35</mark> :70=29+41→35	51 :102=43+59→51
DAC	4:8=3+5→4	20 :40=17+23→20	<mark>36</mark> :72=29+43→36	52 :104=43+61→52
input	5 :10=3+7→5	21 :42=19+23→21	<mark>37</mark> :74=31+43→37	53 :106=53+53→53
	<mark>6</mark> :12=5+7→6	22 :44=13+31→22	<mark>38</mark> :76=29+47→38	54 :108=47+61→54
	7 :14=7+7→7	<mark>23</mark> :46=23+23→23	<mark>39</mark> :78=31+47→39	55 :110=43+67→55
	<mark>8</mark> :16=5+11→8	24 :48=19+29→24	40 :80=19+61→40	56 :112=53+59→56
	9:18=7+11→9	25 :50=19+31→25	41: 82=41+41→41	57 :114=53+61→57
	10 :20=7+13→10	<mark>26</mark> :52=23+29→26	42 :84=41+43→42	58 :116=43+73→58
	11:22=11+11→11	27: 54=23+31→27	43 :86=43+43→43	59 :118=47+71→59
	12 :24=11+13→12	28 :56=19+37→28	44:88 =41+47→44	60 :120=59+61→60
	13 :26=13+13→13	29 :58=29+29→29	45 :90=43+47→45	<mark>61</mark> :122=61+61→61
	14:28=11+17→14	30 :60=29+31→30	46 :92=31+61→46	<mark>62</mark> :124=53+71→62
	15 :30=13+17→15	31 :62=31+31→31	47 :94=41+53→47	<mark>63</mark> :126=53+73→63

24/80

Prime Number Weighted Resistor Network

25/80

Proposed Prime Number DAC Operation (1) ^{26/80}

Proposed Prime Number DAC Operation (2) ^{27/80}

Proposed Prime Number DAC Operation (3) ^{28/80}

Proposed Prime Number DAC Operation (4) ^{29/80}

Proposed Prime Number DAC Operation (5) ^{30/80}

Prime Number DAC Operation for digital input = 6 32/80

Two Switch Arrays and Decoder

33/80

34/80

We could come up with completely new DAC architectures based on integer theory. Polygonal numbers, Prime numbers

Euclid

Leonhard Euler 1707 - 1783

Srinivasa Aiyangar Ramanujan 1887 - 1920

Contents

Statement of This Paper

- DAC Architectures based on Fermat Polygonal Number Theorem
- DAC Architectures based on Goldbach Conjecture for Prime Numbers

DAC Architectures with Gray-code Input

- Waveform Acquisition with Metallic Ratio Equivalent-Time Sampling
- Efficient ADC Testing with Histogram Method
- Conclusion

[9] R. Jiang, G. Adhikari, Y. Sun, D. Yao, R. Takahashi, Y. Ozawa, N. Tsukiji, H. Kobayashi, R. Shiota,

"Gray-code Input DAC Architecture for Clean Signal Generation",

IEEE International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China (Nov. 2017) [10] G. Adhikari, R. Jiang, H. Kobayashi,

"Study of Gray Code Input DAC Using MOSFETs for Glitch Reduction",

IEEE 13th International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, China (Oct 2016)

Binary-Weighted Current-Steering DAC

Switches are driven with binary code

Graphic display driven by DAC

36/80

37/80

Objective

• DAC architecture for clean signal generation

Approach

• Glitch reduction with Gray-code input topology

What is Glitch ?

Generation of Glitch at Switching Time (7)

39/80

When the input changes $7 \rightarrow 8$

Generation of Glitch at Switching Time (15)

40/80

When B3 switches first

Generation of Glitch at Switching Time (0)

Generation of Glitch at Switching Time (8)

Glitch Problem and Remedy

Glitch

Serious deterioration of graphic display and video applications

Remedy

- High-order reconstruction filter
- Track/hold circuitry at the DAC output
- Gray-code input DAC topology

Extra chip area & power

What is Gray code ?

Gray code is a binary numeral system where two successive values differ in only one bit.

Decimal numbers	Natural Binary Code	4-bit Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	<mark>0</mark> 100
8	1000	<mark>1</mark> 100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

4-bit Gray code vs. 4-bit Natural Binary Code

FRANK GRAY and A. L. Johnsrud in television booth. Behind the glass panels at sides and top are the photo-electric cells.

Gray code was invented by Frank Gray at Bell Lab in 1947.

Conversion between Binary and Gray Codes

Binary to Gray code conversion

Gn=Bn+1⊕Bn

Binary to Gray code converter

45/80

Conversion with XOR

Current/Voltage Switch Matrix

46/80

DPDT (Double-Pole Double-Throw) Switch

Proposed DAC Architecture

A long time ago, an analog IC design authority said, "There is no Gray-code input DAC."

Proposed Gray-code Input Current-Steering DAC 48/80

DPDT (Double-Pole Double-Throw) Switch

Gray-code Input Current-Steering DAC (Data=3)

$$I_{out-} = +I + 2I + II + 0I = + 9I$$

 $I_{out+} = +I + 2I - 4I - 8I = -9I$

Gray-code Input Current-Steering DAC (Data=5)

Gray-code Input Current-Steering DAC (Data=14) ^{51/80}

$$I_{out-} = +I - 2I - 4I - 8I = -13I$$
$$I_{out+} = -I + 2I + 4I + 8I = +13I$$

Verification of Glitch Reduction

52/80

Current-Steering Gray-code input DAC with switching delay (8bit)

Simulation Result (Up Sweeping)

53/80

Binary-input Current-Steering DAC VS. Gray-code input current-steering DAC

Simulation Result (Down Sweeping)

54/80

Binary-input Current-Steering DAC VS. Gray-code input current-steering DAC

Simulation Result (Random Switching Delay)

55/80

Binary-input Current-Steering DAC VS. Gray-code input current-steering DAC

Lesson from Gray-code Input DAC

Coding theory leads to robust mixed-signal circuit design.

Alan Mathison Turing 1912 - 1954

Richard Wesley Hamming 1915 - 1998

Claude Elwood Shannon 1916- 2001

Contents

Statement of This Paper

- DAC Architectures based on Fermat Polygonal Number Theorem
- DAC Architectures based on Goldbach Conjecture for Prime Numbers
- DAC Architectures with Gray-code Input
- Waveform Acquisition with Metallic Ratio Equivalent-Time Sampling
- Efficient ADC Testing with Histogram Method
- Conclusion

[11] S. Yamamoto, Y. Sasaki, Y. Zhao, J. Wei, A. Kuwana, K. Sato, T. Ishida, T. Okamoto, T. Ichikawa, T. Nakatani, T. M. Tran,

S. Katayama, K. Hatayama, H. Kobayashi,

"Metallic Ratio Equivalent-Time Sampling: A Highly Efficient Waveform Acquisition Method",

27th IEEE International Symposium on On-Line Testing and Robust System Design (June 2021).

[12] Y. Sasaki, Y. Zhao, A. Kuwana, H. Kobayashi,

"Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System",

27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018).

For IC testing, high efficiency waveform acquisition with equivalent-time sampling.

58/80

Sampling points: localized

Equivalent-Time Sampling

- Technique for acquisition of wideband repetitive waveform
- Used in sampling oscilloscope, automatic test equipment (ATE)

https://teledynelecroy.com/japan/products/scopes/we/default.asp

IC Testing and Equivalent-Time Sampling

60/80

• Input signal \rightarrow Controlled during IC testing Input signal period $T_{SIG} \rightarrow$ Output signal period T_{SIG}

Waveform Missing Phenomena

Waveform Missing Condition

62/80

Sampling points: Localized

Distance ratio between adjacent sampling points: Large

Efficient Waveform Acquisition Condition

Sampling points: Distributed

Distance ratio between adjacent sampling points : Small

Golden Ratio Sampling

Distance of Adjacent Sampling Points

65/80

Maximum distance \checkmark Minimum distance $= \varphi$ or φ^2

Sampling point distances : Not too close & Not too far

Metallic Ratios

Metallic Ratio Sampling

Lesson from Metallic Ratio Sampling

 Discovery of several rules of waveform acquisition efficiency for metallic ratio sampling

Number is within of all things.

Pythagoras

Contents

Statement of This Paper

- DAC Architectures based on Fermat Polygonal Number Theorem
- DAC Architectures based on Goldbach Conjecture for Prime Numbers
- DAC Architectures with Gray-code Input
- Waveform Acquisition with Metallic Ratio Equivalent-Time Sampling

Efficient ADC Testing with Histogram Method

Conclusion

[13] Y. Zhao, A. Kuwana, S. Yamamoto, Y. Sasaki, H. Kobayashi, T. M. Tran, T. Nakatani, K. Hatayama, K. Sato, T. Ishida,

- T. Okamoto, T. Ichikawa, J. Wei, S. Katayama,
- "Input Signal and Sampling Frequencies Requirements for Efficient ADC Testing with Histogram Method",
- 36th International Technical Conference on Circuits/Systems, Computers and Communications, Korea (June 2021).
- [14] Y. Zhao, A. Kuwana, S. Katayama, J. Wei, H. Kobayashi, T. Nakatani, K. Hatayama, K. Sato, T. Ishida, T. Okamoto, T. Ichikawa, "Code Selective Histogram Method: Two-Tone Signal for ADC Linearity Test Time Reduction", International Conference on Analog VLSI Circuits, Bordeaux, France (Oct. 2021).

70/80

SAR ADC linearity test takes a long time

- Iow-speed sampling
 - high-resolution

ADC linearity test with histogram method: Investigation of "high efficiency relationship" between input and sampling frequencies

Linearity Testing with Histogram Method

■Histogram method (Saw wave input)

 ADC output histograms for all bins are equal if ADC is perfectly linear

DNL & INL

Important ADC testing items

- DNL : Difference between actual step width and ideal value
- **INL** : Deviation from ideal conversion line

$$INL(k) = \sum_{i=1}^{k} DNL(i)$$

DNL: Differential Non-Linearity INL: Integral Non-Linearity
Waveform Missing for Saw Signal

73/80

Metallic Ratio

Golden Ratio: $\lim_{n \to \infty} \frac{F_n}{F_{n-1}} = 1.61803398874989... = \varphi$

n		Decimal	
0	1		
1	$\frac{1+\sqrt{5}}{2}$	1.6180339887	Golden Ratio
2	$1 + \sqrt{2}$	2.4142135623	Silver Ratio
3	$\frac{3+\sqrt{13}}{2}$	3.3027756377	Bronze Ratio
4	$2 + \sqrt{5}$	4.2360679774	
n		$\frac{n+\sqrt{n^2+4}}{2}$	

Generalization of Golden Ratio

ADC Output Histogram for Saw Signal Input

75/80

RMS Error Calculation

Lesson from ADC Histogram Test

Input frequency vs Sampling frequency

Some metallic ratio sampling is very good.

Lord Kelvin 1824 - 1907 No science without measurement No production

without test

Testing is important as well as design

77/80

Contents

- Statement of This Paper
- DAC Architectures based on Fermat Polygonal Number Theorem
- DAC Architectures based on Goldbach Conjecture for Prime Numbers
- DAC Architectures with Gray-code Input
- Waveform Acquisition with Metallic Ratio Equivalent-Time Sampling
- Efficient ADC Testing with Histogram Method

Conclusion

Analog / mixed-signal IC designers can obtain new circuit design hints from classical mathematics.

Both circuit design and mathematics are fun !

陳景潤 Chen Jingrun Chinese Mathematician (Integer theory) 1933-1996

References

[1] (invited) H. Kobayashi, Y. Sasaki, H. Arai, D. Yao, Y. Zhao, X. Bai, A. Kuwana, "Unified Methodology of Analog/Mixed- Signal IC Design Based on Number Theory", IEEE 14th International Conference on Solid-State and Integrated Circuit Technology, Qingdao, China (Nov. 2018).

[2] (Invited) H. Kobayashi, H. Lin, "Analog / Mixed-Signal Circuit Design Based on Mathematics", IEEE 13th International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, China (Oct. 2016).

[3] X. Bai, D. Yao, Y. Du, M. T. Tran, A. Kuwana, H. Kobayashi, K. Kubo, "Design of Digital-to-Analog Converter Architectures Based on Polygonal Numbers", International Conference on Analog VLSI Circuits, Bordeaux, France (Oct. 2021)

[4] Y. Du, X. Bai, M. Hirai, S. Yamamoto, A. Kuwana, H. Kobayashi, K. Kubo, "Digital-to-Analog Converter Architectures Based on Polygonal and Prime Numbers", 17th International SOC Design Conference, Yeosu, Korea (Oct. 2020)

[5] X. Bai, Y. Du, M. T. Tran, A. Kuwana, H. Kobayashi, "Digital-to-Analog Converter Architectures Based on Goldbach Conjecture for Prime Numbers in Mixed-Signal ULSI", 30th International Workshop on Post-Binary ULSI Systems (May 2021).

[6] M. Hirai, H. Tanimoto, Y. Gendai, S. Yamamoto, A. Kuwana, H. Kobayashi, "Digital-to-Analog Converter Configuration Based on Non-uniform Current Division Resistive-Ladder", 36th International Technical Conference on Circuits/Systems, Computers and Communications, Republic of Korea (June 2021).

[7] M. Hirai, H. Tanimoto, Y. Gendai, S. Yamamoto, A. Kuwana, H. Kobayashi, "Nonlinearity Analysis of Resistive Ladder-Based Current-Steering Digital-to-Analog Converter", 17th International SOC Design Conference, Yeosu, Korea (Oct. 2020)

[8] M. Hirai, S. Yamamoto, H. Arai, A. Kuwana, H. Tanimoto, Y. Gendai, H. Kobayashi, "Systematic Construction of Resistor Ladder Network for N-ary DACs", 13th IEEE International Conference on ASIC, Chongqing, China (Oct. 2019)

[9] R. Jiang, G. Adhikari, Y. Sun, D. Yao, R. Takahashi, Y. Ozawa, N. Tsukiji, H. Kobayashi, R. Shiota, "Gray-code Input DAC Architecture for Clean Signal Generation", IEEE International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China (Nov. 2017)

[10] G. Adhikari, R. Jiang, H. Kobayashi, "Study of Gray Code Input DAC Using MOSFETs for Glitch Reduction", IEEE 13th International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, China (Oct 2016)

[11] S. Yamamoto, Y. Sasaki, Y. Zhao, J. Wei, A. Kuwana, K. Sato, T. Ishida, T. Okamoto, T. Ichikawa, T. Nakatani, T. M. Tran, S. Katayama, K. Hatayama, H. Kobayashi, "Metallic Ratio Equivalent-Time Sampling: A Highly Efficient Waveform Acquisition Method", 27th IEEE International Symposium on On-Line Testing and Robust System Design (June 2021).

[12] Y. Sasaki, Y. Zhao, A. Kuwana, H. Kobayashi, "Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System", 27th IEEE Asian Test Symposium, Hefei, Anhui, China (Oct. 2018)

[13] Y. Zhao, A. Kuwana, S. Yamamoto, Y. Sasaki, H. Kobayashi, T. M. Tran, T. Nakatani, K. Hatayama, K. Sato, T. Ishida, T. Okamoto, T. Ichikawa, J. Wei, S. Katayama, "Input Signal and Sampling Frequencies Requirements for Efficient ADC Testing with Histogram Method", 36th International Technical Conference on Circuits/Systems, Computers and Communications, Republic of Korea (June 2021).

[14] Y. Zhao, A. Kuwana, S. Katayama, J. Wei, H. Kobayashi, T. Nakatani, K. Hatayama, K. Sato, T. Ishida, T. Okamoto, T. Ichikawa, "Code Selective Histogram Method: Two-Tone Signal for ADC Linearity Test Time Reduction", International Conference on Analog VLSI Circuits, Bordeaux, France (Oct. 2021)