ASICON 2021 Session D3: Novel Device II 5, 0246 Thursday, October 28, (11:15-11:30)

Analysis of Switching Characteristics of Wide SOA and High Reliability 100 V N-LDMOS Transistor with Dual RESURF and Grounded Field Plate Structure

Anna Kuwana, Jun-ichi Matsuda and Haruo Kobayashi (Gunma Univ., Japan)

Gunma University Kobayashi Lab

Outline

- 1. Objective and Background
- 2. Conventional and Proposed LDMOS Transistor Structures
- 3. Simulation Results
 - Turn-on characteristics (Conventional)
 - Turn-on characteristics (Proposed)
 - Turn-off characteristics (Conventional)
 - Turn-off characteristics (Proposed)
- 4. Discussion
 - Switching losses by changing $R_G \& R_L$
 - Total energy loss
- 5. Summary

Simulation:

3D device simulator Advance/DESSERT developed by AdvanceSoft Corporation

Background

- We proposed a 0.35 µm CMOS compatible dual REduced SURface Field (RESURF) 100 V LDMOS transistor with a two-step grounded field plate*.
- For automotive applications to meet the requirements for...
 - wide SOA (Safe Operating Area)
 - high hot carrier endurance
 - Iow specific on-resistance
 - Iow switching loss

*J. Matsuda, A. Kuwana, J. Kojima, N. Tsukiji, and H. Kobayashi, ICSICT, (2018).

1. Introduction

Device Structures and Features

*J. Matsuda, A. Kuwana, J. Kojima, N. Tsukiji, and H. Kobayashi, ICSICT, (2018).

1. Introduction

Objective of This Study

Previous Study

The parameters were optimized and

the acceptable range for mass production was clarified.

- A. Kuwana, J. Matsuda and H. Kobayashi, ASICON, D7-5, Chongqing, China (2019).
- > J. Matsuda, A. Kuwana and H. Kobayashi, IEEJ Trans. EIS, Vol.140, No.11, pp.1220-1229, (2020) (in Japanese)

This Study

 Switching characteristics are analyzed in detail by changing the load resistance R_L and the gate resistance R_G

Turn-on characteristics (Conventional)

Region ①: OFF state

- $V_{GS} < V_T$ (the threshold voltage)
- V_{GS} increases, the gate current J_G flows
- Charge:
 - ✓ Input capacitance ($C_{GS}+C_{GC}$)
 - ✓ Feedback capacitance
 - (Miller capacitance: $C_{GD}+C_{FD}$)
 - ✓ Output capacitance (C_D)

2. Simulation results

Turn-on characteristics (Conventional)

- Region 2 : Gate plateau state
- Charge C_{GD}+C_{FD}
- Drain voltage V_{DS} decreases
- Drain current J_D increases
- Discharge C_D

Region ③: ON state.

Turn-on characteristics (Proposed)

Region ①: OFF state

- $V_{GS} < V_T$ (the threshold voltage)
- V_{GS} increases, the gate current J_G flows
- Charge:
 - ✓ Input capacitance $(C_{GS}+C_{GC}+C_{FG})$
 - ✓ Feedback capacitance
 - (Miller capacitance: C_{GD})
 - ✓ Output capacitance $(C_D + C_{FD})$

Turn-on characteristics (Proposed)

Region (2) : J_D increase, V_{DS} decrease

- V_{GS} increases.
- Displacement current (J_{FP}+J_{PB}+J_{Sub}) increases.
- Discharging C_D+C_{FD}
 - \rightarrow the drain voltage of the intrinsic MOSFET
 - V_{DS-INT} almost constant.
 - C_{GD} is not practically charged.

2. Simulation results

Turn-on characteristics (Proposed)

2. Simulation results

Turn-off characteristics (Conventional)

- Region ①: ON state
- Gate current J_G discharges
 - ✓ input capacitance ($C_{GS}+C_{GC}$).
 - ✓ feedback capacitance $(C_{GD}+C_{FD})$.
 - ✓ output capacitance (C_D).
- Drain current charges $C_{GD} + C_{FD}$ and C_{D}
- Minus $J_{PB}+J_{Sub}$ and minus J_{G} .

2. Simulation results

Turn-off characteristics (Conventional)

Region 2: turn-off process

- V_{DS} increases and J_D decreases
- displacement currents charging $C_{\rm D}$ and $C_{\rm GD}\text{+}C_{\rm FD}$
- Charging $C_{GD}+C_{FD} \rightarrow Miller$ effect.

Region ③: OFF state.

Turn-off characteristics (Proposed)

Region ①: ON state

- Parasitic capacitance tied to the gate is smaller
 - → Gate switching is faster Miller effect is not observed

Turn-off characteristics (Proposed)

Region 2: turn-off process

- without the Miller effect
- Displacement current $(J_{FP}+J_{PB}+J_{Sub})$ charges output capacitance (C_D+C_{FD}) .
- Output capacitance is large. →the charging period is longer.

Region ③ is OFF state.

Switching losses by changing R_G&R_I

Total switching loss : Proposed < Conventional (for $R_G > 2 \Omega mm^2$ at R_L : 65.5 Ωmm^2) (for $R_L < 45 \Omega mm^2$ at R_G : 1.31 Ωmm^2)

This is caused by...

- Feedback capacitance: Proposed < Conventional.
- Field plate: Proposed \rightarrow large output capacitance, Conventional \rightarrow large feedback capacitance.
- Specific on-resistance: Proposed (150 m Ω mm²) < Conventional (178 m Ω mm²).

Total energy loss

• f = 3MHz

Summary

- The switching characteristics were analyzed in detail by changing R_L and R_G .
- The total energy loss (total switching loss + conduction loss)
 - Proposed > Conventional
 - Only in the region of low gate resistance, light load (high resistive load),

low duty cycle, and high switching frequency.

- Proposed < Conventional (in most of the actual use range)</p>
- This is caused by...
 - Feedback capacitance: Proposed < Conventional.</p>
 - ➢ Field plate: Proposed →large output capacitance Conventional →large feedback capacitance.
 - > Specific on-resistance: Proposed (150 m Ω mm²) < Conventional (178 m Ω mm²).

Acknowledgments

We would like to express sincere thanks to AdvanceSoft Corporation for providing us some licenses of using a 3D TCAD simulator. The development of this simulator is assisted by Japan Science and Technology Agency, National Research and Development Agency using A-STEP program.

B DESSERT - MOSFET_test_0001_0005		– 🗆 X	DESSERT - MOSFET_test2	X
ジョブロ 編集回 ビューロ ヘルブロ			ジョブロ 編集回 ビュー凶 ヘルブロ	
ツールボックス 4	X MOSFET_test_0001_0005		ツールボックス + ×	MOSFET_Lest2
		熱値範囲: -5.0404554735e+000~-3.9556672567e+000		Material (Autline)
= 911/(-	max4.009907e+000	現代1988年1 -4.986216e+000 -4.009907e+000 以外数		
🙂 🔍 🗳 🔯	min4.986216e+000	解析結果: ELECTROSTATIC_POTENTIAL[V] ~	= YILK-	
	▲ 4.009907e+000	面描画 ~ (< wheel>) 21		
ツリービュー 4	A.107538e+000		yy-Ez- a ×	SI SI
田一 ● ドービング	4.205169e+000		□····································	
🔷 材料設定	4.302800e+000		ш. • Уу́>э	
	-4.400431e+000		- · F-E20	
Ⅲ- ♥ 解析設定	✓ 4.498062e+000		● ● 机料設定 ●	
DESSERT 設定 中	4.595692e+000		DESSERT 設定 中 ×	
them in	4.693323e+000			
では上 音圧表記 auto	4.790954e+000		電圧参照 auto 各荷抵抗[O] 0.00000000F+000	
負荷抵抗 [Ω] 0.0000000E+000	4.888585850+000		負荷インダクタンス [H] 0.00000000E+000	
負荷インダクタンス [H] 0.0000000E+000	-4.986216e+UUU		F-N モデル	
F-N モデル			スイッチ OFF	
ス1ッナ OFF 任期 [A 0/2] 1 0000000E-004			1条数 [A/V2] 1.0000000E-004 公表指数 2.0000000E+000	
べき指数 2.0000000E+000	v		有効質量 [m0] 1.0000000E+000 V	
< >			٢	
Convergence Status 🛛	×		Convergence Status 🔍 🔍 🗙	
0.000045				
l la				
Z 0.000040				
É				
문 0.000035				
8 0.000030				
4 /	z		0.000000	
0.000025 ···· · · · · · · · · · · · · · · · ·				
± 0.000020	X Y			
0.000015				
0.000010				
0.05 0.10 0.15 0.20 Electrode_AI_5-VOLTAGE [V]	A A	dvance / DESSERT	0.00	Advance / DESSERT
		NUMISCR	L.	I NUMISCRI
		Baseow Search 1944		

https://www.advancesoft.jp