

ASIAN TEST SYMPOSIUM 2021 November 22–25, 2021—Virtual Event Hosted by Japan—

High Precision Measurement of Sub-Nano Ampere Current in ATE Environment

ROHM Co,. Ltd.

Keno Sato, Takashi Ishida, Toshiyuki Okamoto, Tamotsu Ichikawa

Gunma University

Takayuki Nakatani, Shogo Katayama, Gaku Ogihara, Daisuke limori, Yujie Zhao, Jianglin Wei, Anna Kuwana, Kazumi Hatayama, Haruo Kobayashi

To achieve measurement of Sub-Nano Ampere Current w/ Automatic Test Equipment(ATE)

- Requirements
 - Fast Testing
 - High Accuracy
 - High Stability
- Proposed Method
 - FFT-Based DC-AC Conversion for Current measurement

- Research Background
- Sub-Nano Ampere Current Testing
- Proposed Method
- Experiment of DC-AC Current Measurement
- Verification with Actual DUT
- Conclusion

Mobile and Wearable devices

Requirement

Long battery life

Development

Low power consumption LSI

Low power consumption is a key performance

- Research Background
- Sub-Nano Ampere Current Testing
- Proposed Method
- Experiment of DC-AC Current Measurement
- Verification with Actual DUT
- Conclusion

Sub-Nano Ampere Current Testing

Large current sense resistor "Rm" will affect Test Time

Difficulty of Sub-Nano Ampere Current Testing (2/2)

Environmental Noises

Actual Test Environment

System noises will affect Sub-Nano Ampere Current Testing © 2021 ROHM Co., Ltd 6/28

- Research Background
- Sub-Nano Ampere Current Testing
- Proposed Method
- Experiment of DC-AC Current Measurement
- Verification with Actual DUT
- Conclusion

Proposed Method

FFT-based DC-AC Conversion

Overview

DC Voltage is converted to Fundamental Power Spectrum

Proposed Method

FFT-based DC-AC Conversion

Feature

DC Voltage measurement accuracy is less than 1µV

Test time can be reduced for Sub-Nano Ampere Measurement

- Research Background
- Sub-Nano Ampere Current Testing
- Proposed Method
- Experiment of DC-AC Current Measurement
- Verification with Actual DUT
- Conclusion

Experiment Setup

- R_m (Feedback register) : 10kΩ, 100kΩ
- F_s (Digitizer Sampling Rate) : 25.6ksps, 51.2ksps, 102.4ksps

Overall Experiment Environment

Experiment of DC-AC Current Measurement

Board Configuration

Comparison of probability density

DC-AC Conversion result of 1nA measurement

The longer the sampling time, the smaller the data variance © 2021 ROHM Co., Ltd.

Comparison of variation width

Current variation of 1nA and 10nA

Input current does not affect data variation

Experiment of DC-AC Current Measurement

Comparison by probability density

Rm value of 10k Ω and 100k Ω

The larger Rm, the smaller the data variance

Smoothing effect

Moving Average (4 times)

Variation reduction by about 50%

Experiment of DC-AC Current Measurement

Limit of measurable current value

Moving Average (4 times)

- I∟: 1nA
- Rm :100kΩ
- Sample points
 ✓ 1024 bins
- Sampling Frequency
 ✓ 25.60ksps (40ms)

Maintains linearity as low as measured current of 0.02nA

ROHIT

- Research Background
- Sub-Nano Ampere Current Testing
- Proposed Method
- Experiment of DC-AC Current Measurement
- Verification with Actual DUT
- Conclusion

BD70522GUL

Nano Energy[™] Ultra Low Iq Buck Converter

- Standby Current
- Operating Quiescent Current

DC-AC Conversion Circuit for Current Measurement

GND Side

Verification with 5 samples

GND Side

- Rm :10kΩ
- Sample points :1024bins
- Sampling Rate :25.60ksps

Test time :50msec

Stabilization time :10msec Measurement time :40msec

Need to improve variation width

DC-AC Conversion Circuit for Current Measurement VDD Side +5VCurrent Mirror 1nA + 1nA + 100nA/DC **100nA/DC** V 1nA/DC **NPN DC-AC Conversion Circuit** --> +3.6V V_m C_m R_m 10uV/DC **10k** 1uF <-- 1nA/DC V_{DD} 100nA 100nA DUT **BD70522GUL Offset Current** -5V

Verification with 5 samples

VDD Side

- Rm :10kΩ
- Sample points :1024bins
- Sampling Rate :25.60ksps

Test time :50msec

Stabilization time :10msec Measurement time :40msec

Variation width smaller than 1nA

- Research Background
- Sub-Nano Ampere Current Testing
- Proposed Method
- Experiment of DC-AC Current Measurement
- Verification with Actual DUT
- Conclusion

Sub-Nano Ampere Current Testing

"FFT Based DC-AC Conversion for Current measurement" meets the requirements

Fast Testing

Sub-Nano Ampere testing time is approximate **50msec**

High Accuracy

Current measurement range is **20pA**

• High Stability

Current variation width is less than **1nA**

Thank you very much

ROHM Co., Ltd. © 2021 ROHM Co., Ltd.