Oct. 2021

Design Considerations for MOS Peaking Current Sources Insensitive to Supply Voltage and Temperature

<u>Takafumi Kamio</u>, T. Hosono , S. Yamamoto , J. Matsuda S. Katayama, A. Kuwana, A. Suzuki , S. Yamada T. Kato, N. Ono, K. Miura, H. Kobayashi *Gunma University* Jedat Inc.

Kobayashi Laboratory

- Research Objective
- Peaking Current Source
- Drain Current Temperature Characteristics
- Single-Peak Current Sources
- Multiple-peak current Sources
- Conclusion

<u>Research Objective</u>

- Peaking Current Source
- Drain Current Temperature Characteristics
- Single-Peak Current Sources
- Multiple-peak current Sources
- Conclusion

Development of reference current source insensitive to temperature and supply voltage with simple CMOS circuit.

- Realization of MOS peaking current sources insensitive to temperature and supply voltage.
- Clarification of drain current temperature characteristics cross-point gate voltage (VCP)
- Obtain design guideline.

NMOS drain current

Current source insensitive to temperature and supply voltage

- Research Objective
- Peaking Current Source
- Drain Current Temperature Characteristics
- Single-Peak Current Sources
- Multiple-peak current Sources
- Conclusion

Original Nagata Current Mirror

Simple Widely used. Ex: in DC-DC converter ICs

Circuit Configuration and Operation(1)

Circuit Configuration and Operation(2)

Temperature characteristics should be also considered.

Need for Temperature Care

Our first prototype chip

Layout by

Measurement environment

- Insensitive to supply voltage
- Sensitive to temperature

> 8 6

[1] M. Hirano, et. al., "Silicon Verification of Improved Nagata Current Mirrors", IEEE ICSICT(Nov. 2018)

- Research Objective
- Peaking Current Source
- Drain Current Temperature Characteristics
- Single-Peak Current Sources
- Multiple-peak current Sources
- Conclusion

Drain Current Temperature Characteristics

NMOS drain current temperature characteristics

- For VGS = VCP, IDS is insensitive to temperature.
 - At high temperature,

For VGS < VCP, IDS becomes larger

For VGS > VCP, IDS becomes smaller.

VCP and Small Channel Length L

NMOS drain current temperature characteristics

VCP and Small Channel Width W

NMOS drain current temperature characteristics

VCP and Drain-Source Voltage VDS

NMOS drain current temperature characteristics

- Research Objective
- Peaking Current Source
- Drain Current Temperature Characteristics
- <u>Single-Peak Current Sources</u>
- Multiple-Peak Current Sources
- Conclusion

Temperature Insensitive Current Source

Design guideline

- Channel length *L* should be long enough. If short, process variation for $L+\Delta L$, *VCP* varies a lot.
- Channel width W should be wide enough. If narrow, process variation for $W+\Delta W$, VCP varies a lot.
- Drain-source voltage VDS should be constant. such as using cascode circuit.

NMOS Single-Peak Cascode Circuit^{18/29}

NMOS cascode single-peak current source

- Temperature insensitivity point (VCP) exists
- Output current lout is insensitive also to the supply voltage (VDD).

NMOS Single-Peak Cascode Result^{19/29}

Even when Vout changes

- Temperature insensitivity point (VCP) does NOT change.
- M2 drain voltage keeps constant.

PMOS Single-Peak Current Source

PMOS Nagata Current Source

when the load resistor (Rout) is changed, drain voltage of M2 changes and lout changes

using cascode circuit

PMOS Circuit Improvement

PMOS Nagata current source

PMOS single-peak cascode circuit

Even when *ROUT* changes,

M2 drain voltage (VSD) keeps constant, thanks to cascade.

PMOS Single-Peak Cascode Circuit

PMOS cascode single-peak current source

Even when *Rout* changes

- Temperature insensitivity point (VCP) does NOT change.

- Research Objective
- Peaking Current Source
- Drain Current Temperature Characteristics
- Single-Peak Current Sources
- <u>Multiple-Peak Current Sources</u>
- Conclusion

NMOS Multiple-Peak Current Sources

- Output current is insensitive to supply voltage.
- Temperature variations with supply voltage more than 2.0V.

Multiple-Peak Circuit Design

Use of multiple peaking current sources

Current source design is relatively easy.

Multiple peaks \Rightarrow

Total current is insensitive to supply voltage and temperature.

NMOS Multiple-Peak Current Source Result^{26/29}

Even when Vout changes

- Temperature insensitivity point (VCP) does NOT change.
- M2 drain voltage keeps constant.

- Research Objective
- Peaking Current Source
- Drain Current Temperature Characteristics
- Single-Peak Current Sources
- Multiple-Peak Current Sources
- <u>Conclusion</u>

Conclusion

- MOS peaking current sources insensitive to supply voltage and temperature
- Both NMOS and PMOS types
- Resistor temperature coefficients can be positive, zero or negative if they are known a priori.
- Design guideline :

Use enough L, W and keep VDs constant.

• Knowledge of CMOS device physics and modeling as well as circuit is useful.

Metric System at French Revolution

Thank you very much

