International Conference on Analog VLSI Circuits Bordeaux, France, 18<sup>th</sup> Oct. 2021

#### Two-Step Incremental ADC Architecture With Self-Calibration of Two Reference Voltages Ratio

Lengkhang Nengvang,

S. Katayama, J. Wei, L. Sha, T. M. Tran, A. Kuwana, K. Naganuma, K. Sasai, J. Saito, H. Kobayashi

Gunma University

Alps Alpine Co., Ltd.

Perfecting the Art of Electronics



2021/9/27

Kobayashi Lab. Gunma University

- Research Background and Objective
- 2-step Incremental ADC:
  - Configuration and Operation
  - Effect of Clock Periods for 1<sup>st</sup>, 2<sup>nd</sup> Steps
  - $2^{nd}$  Reference Voltage  $V_{r2}$
- Proposed Self-Calibration:
  - Configuration and Operation
  - Simulation Verification
- Conclusion

- Research Background and Objective
- 2-step Incremental ADC:
  - Configuration and Operation
  - Effect of Clock Periods for 1<sup>st</sup>, 2<sup>nd</sup> Steps
  - 2<sup>nd</sup>Reference Voltage V<sub>r2</sub>
- Proposed Self-Calibration:
  - Configuration and Operation
  - Simulation Verification

Conclusion

#### **Research Background**





Incremental ADCs receive a lot of attention because of circuit simplicity, low power and high accuracy

#### **Research Objective**

- 1-step incremental ADC
  - 🙂 Circuit simplicity
  - 😥 Long conversion time
- 2-step incremental ADC
  - Short conversion time
  - Nonlinearity due to 1<sup>st</sup> and 2<sup>nd</sup> steps mismatch.

Objective: • 2-step incremental ADC

with its behavioral simulation

 Proposal of self-calibration method for mismatch compensation.

#### What is Incremental ADC?

ΔΣ AD modulator + Reset
Nyquist-Rate ADC, NOT Oversampling ADC



#### Research Background and Objective

#### 2-step Incremental ADC:

- Configuration and Operation
- Effect of Clock Periods for 1<sup>st</sup>, 2<sup>nd</sup> Steps
- 2<sup>nd</sup> Reference Voltage V<sub>r2</sub>
- Proposed Self-Calibration:
  - Configuration and Operation
  - Simulation Verification

Conclusion

#### 2-Step Incremental ADC



#### **Reset Operation**



## **Operation of Step 1**



After N clocks, integrator output V<sub>o</sub>:

$$V_o(N+1) = N \cdot V_{in} - (N_p - N_m)V_{r1}$$

 $N_p$ : Number of comparator outputs  $D_o = 1$  $N_m$ : Number of comparator outputs  $D_o = 0$  10/25

## **Operation of Step 2**



11/25

- Research Background and Objective
- 2-step Incremental ADC:
  - Configuration and Operation
  - Effect of Clock Periods for 1st, 2nd Steps
  - $2^{nd}$  Reference Voltage  $V_{r2}$
- Proposed Self-Calibration:
  - Configuration and Operation
  - Simulation Verification
- Conclusion

#### **Clock Periods N in Step 1**



- V<sub>in</sub> calculation: input V<sub>in</sub> evaluated by derived equation

## **Clock Periods M in Step 2**



- Research Background and Objective
- 2-step Incremental ADC:
  - Configuration and Operation
  - Effect of Clock Periods for 1<sup>st</sup>, 2<sup>nd</sup> Steps
  - $2^{nd}$  Reference Voltage  $V_{r2}$
- Proposed Self-Calibration:
  - Configuration and Operation
  - Simulation Verification
- Conclusion

### Effect of Reference Voltage $V_{r2}$





ADC error is proportional to reference voltage Vr2 Small value of  $V_{r2}$  reduces ADC error

16/25

- Research Background and Objective
- 2-step Incremental ADC:
  - Configuration and Operation
  - Effect of Clock Periods for 1<sup>st</sup>, 2<sup>nd</sup> Steps
  - 2<sup>nd</sup> Reference Voltage V<sub>r2</sub>
- Proposed Self-Calibration:
  - Configuration and Operation
  - Simulation Verification
- Conclusion

- $2^{nd}$  reference voltage  $V_{r2}$ :
  - Measurement with the incremental ADC itself with  $1^{st}$  reference voltage  $V_{r1}$
- Two reference voltages ratio can be measured
- Accurately
- With only small extra circuits (only additional switches)

## **Self-Calibration Operation**



- Research Background and Objective
- 2-step Incremental ADC:
  - Configuration and Operation
  - Effect of Clock Periods for 1<sup>st</sup>, 2<sup>nd</sup> Steps
  - 2<sup>nd</sup> Reference Voltage V<sub>r2</sub>
- Proposed Self-Calibration:
  - Configuration and Operation
  - Simulation Verification
- Conclusion

## **Simulation Results 1**



#### Normalized error in (c) is smaller than (b).

## **Simulation Results 2**



- Research Background and Objective
- 2-step Incremental ADC:
  - Configuration and Operation
  - Effect of Clock Periods for 1<sup>st</sup>, 2<sup>nd</sup> Steps
  - 2<sup>nd</sup> Reference Voltage V<sub>r2</sub>
- Proposed Self-Calibration:
  - Configuration and Operation
  - Simulation Verification
- Conclusion

- ✓ 2-step incremental ADC:
  - High accuracy and short conversion time
  - Small  $V_{r2}$  significantly reduces quantization error.
  - Mismatch of 2 reference voltages causes ADC nonlinearity.
- ✓ Proposed self-calibration method:
  - Small additional circuit
  - Long conversion time, but just once.
  - Reference voltages mismatch compensation
- Future work:

Extension to 3-step and 4-step incremental ADCs







#### Metric System at French Revolution

# Thank you very much





Kobayashi Laboratory

