International Conference on Analog VLSI Circuits (AVIC) Bordeaux, France 21st Oct. 2021

Folding ADC for Multi-bit $\Delta\Sigma$ AD Modulator

<u>Xiongyan Li</u>, T. Feng, L. Nengvang, S. Katayama, J. Wei H. Lin, A. Kuwana, H. Kobayashi K. Nagamuma, K. Sasai, J. Saito

> Gunma University Alps Alpine Co., Ltd.

Kobayashi Lab. Gunma University

OUTLINE

- Research Background and Objective
- Conventional High-Speed ADCs
- Flash ADC
- Current-Domain Folding ADC
- Proposed Charge-Domain Folding ADC
- Conclusions

OUTLINE

- Research Background and Objective
- Introduction to ADC
- Conventional High-Speed ADCs
- Flash ADC
- Current-Domain Folding ADC
- Proposed Charge-Domain Folding ADC
- Conclusions

Research Background

- Rapid development of digital electronics technology
- A natural signal is analog
 - ADC is important as their interface

Research Objective

Objective:

Development of fast, small circuit, low power 5-bit or 6-bit CMOS ADC architecture for multi-bit ΔΣ AD modulator

Our Approach: Folding ADC architecture + CMOS nonlinear switched capacitor circuit

OUTLINE

- Research Background and Objective
- Conventional High-Speed ADCs
 - Flash ADC
 - Current-Domain Folding ADC
- Proposed Charge-Domain Folding ADC
- Conclusions

OUTLINE

- Research Background and Objective
- Conventional High-Speed ADCs
- Flash ADC
- Current-Domain Folding ADC
- Proposed Charge-Domain Folding ADC
- Conclusions

3-bit Flash ADC Configuration

Analog input

3-bit Flash ADC Operation

In case Vin =4.5 V

3-bit Flash ADC Operation

Features of Flash ADC

Comparator array

- Fastest ADC
- Large hardware
 - N-bit Flash ADC $\Rightarrow 2^{N}-1$ comparators
 - 3-bit (N=3) case ⇒ 7 comparators

In actual implementation, N is limited up-to 7-bit.

OUTLINE

- Research Background and Objective
- Conventional High-Speed ADCs
 - Flash ADC
- Current-Domain Folding ADC
- Proposed Charge-Domain Folding ADC
- Conclusions

Features of Folding ADC

- Fastest ADC
- Usage of analog encoding circuit
 - ⇒ Remove "redundancy of flash ADC"
- Small hardware
 - N-bit folding ADC \Rightarrow N comparators 3-bit (N=3) case \Rightarrow 3 comparators
 - No need for digital encoder

- Frank Gray at Bell Lab invented Gray code in 1947.
- Robust code compared to binary code.

 $F_{\rm RANK}$ GRAY and A. L. Johnsrud in television booth. Behind the glass panels at sides and top are the photo-electric cells.

Often used in ADC.

Gray code: The distance between adjacent signs before and after is always 1

Binary Code versus Gray Code

Decimal numbers	Binary Code	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0 111	0 100
8	> 1000	> 1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

Gray code output with respect to analog input Vin

Current-Mode Analog Encoder for G3, G2

SPICE simulation result

Analog input Vin

Current-Mode Analog Encoder for G3, G2

Current-Mode Analog Encoder for G1

SPICE simulation result

Current-Mode Analog Encoder for G1

Current-Mode Analog Encoder for G1

Gray code analog encoder ⇒ Cross-coupling of NMOS pairs

Current-mode analog encoder

- Effective for hardware reduction
- Suitable for bipolar circuit,
 thanks to its high current drivability
- Not suitable for CMOS circuit (operation is slow)
 - due to its low current drivability

OUTLINE

- Research Background and Objective
- Conventional High-Speed ADCs
- Flash ADC
- Current-Domain Folding ADC
- Proposed Charge-Domain Folding ADC
- Conclusions

Consideration of CMOS Folding ADC

• CMOS circuit advantages

- MOS switch usage
- Preamplifier saturation characteristics usage

 Nonlinear switched capacitor folding circuit with CMOS

Avoid CMOS low current drivability

Charge-Domain Folding ADC

Preamplifiers + Distributed T/H circuits + Switches

Charge-Domain Folding ADC

Charge-Domain Folding ADC

28/46 Charge-Domain Folding ADC Circuit Amount

SPICE simulation result

Analog input Vin

SPICE simulation result

Analog input Vin

Analog input Vin

Explanation of Analog Encoding

Alternative connection of each preamplifier +, - outputs

Explanation of analog encoding for G3 generation.

Operation of Charge-Domain Folding ADC for G2 ^{34/46}

SPICE simulation result

Analog input Vin

Analog input Vin

Preamplifier Circuit

Designed preamplifier circuit

SPICE simulation results

Vout+ - Vout-

Analog input Vin+ - Vin-

Designed preamplifier circuit

SPICE simulation results

Preamplifier Circuit Gain vs Parameters (1)

Preamplifier Circuit Gain vs Parameters (2)

Comparison with Flash ADC

6bit case

Charge-Domain Folding ADC
Folding ADC
68 preamplifiers
6 comparators
Switched capacitor array

- Small chip area
- Low power

Significant improvement of ADC Figure of Merit (FOM)

Charge domain folding ADC

Advantage: High speed, low power, small chip area Disadvantage: ADC nonlinearity due to device mismatch

Proposed killer application

Usage inside multi-bit $\Delta\Sigma$ ADC

Currently, 3-bit flash ADC is used.

6-bit folding ADC can be used.

Its nonlinearity is noise-shaped inside the modulator.

Extended Leslie-Singh Architecture

OUTLINE

- Research Background and Objective
- Conventional High-Speed ADCs
- Flash ADC
- Current-Domain Folding ADC
- Proposed Charge-Domain Folding ADC
- Conclusions

Conclusion

Charge-domain folding ADC is proposed.

- Significant hardware reduction
 For N-bit, only N comparators
 - No need for digital encoder
- Suitable for CMOS implementation
 Usage of MOS switch & capacitor
- Basic circuit topology, operation and SPICE simulation results are shown.

Think of a difficult problem in small pieces.

Thank you very much

René Descartes 1596-1650

