Evaluation of High-Precision Nano-Ampere Current Measurement Method for Mass Production

<u>Gaku Ogihara</u>, T. Nakatani, D. limori, S. Katayama, J. Wei, Y. Zhao, A. Kuwana, K. Hatayama, H. Kobayashi K. Sato, T. Ishida, T. Okamoto, T. Ichikawa

> Gunma University ROHM Co,. Ltd.

Kobayashi Lab. Gunma University

- Research Background and Objective
- Nano Ampere Current Testing
- Proposed Method
- Experiment
- Conclusion

Research Background and Objective

- Nano Ampere Current Testing
- Proposed Method
- Experiment
- Conclusion

Research Background

Mobile and wearable devices

Low power consumption is important

Research Objective

Nano Ampere Current Testing

Requirements

- Fast Testing
- High Accuracy and High Stability

Proposed Method

FFT-Based DC-AC Conversion

- Research Background Objective
- Nano Ampere Current Testing
- Proposed Method
- Experiment
- Conclusion

Nano Ampere Current Testing

Voltage Source / Current Measurement (VSIM) in ATE system

Large current sense resistor *Rm* (*M*Ω order) causes slow testing

Noisy environment in ATE

- Research Background and Objective
- Nano Ampere Current Testing
- Proposed Method
- Experiment
- Conclusion

FFT-based DC-AC Conversion

Conversion flow

DC voltage is converted to fundamental power spectrum

Proposed Circuit for GND side

Measurement circuit

For GND side

Proposed Circuit for VDD side

Measurement Circuit

For VDD Side

- Research Background and Objective
- Nano Ampere Current Testing
- Proposed Method
- Experiment
- Conclusion

Equipment Configuration

Overall experiment environment

Experiment Board

Board configuration

Resistive Load DUT

Experiment conditions

- Sampling rate : 25.6ksps, 51.2ksps, 102.4ksps
- Input current : 1nA, 10nA
- Feedback register $Rm : 10k\Omega$, $100k\Omega$

Effect of Sampling Rate

Comparison by probability density

Sample points = 1024 bins

The longer the sampling time, the smaller the data variance

Effect of Input Current /s

Comparison of variation width

Input current does not affect data variation

Effect of Feedback Resister Rm

Comparison of variation width

The larger Rm, the smaller the data variance

Moving Average

Smoothing effect

- Moving average (4 times) processing,
 - Variation reduction by about 50%

Variation width at 1024-bin, 25.6ksps (40msec/frame)

Measurement Linearity

Limit of measurable current value

Rm = 100k, fs = 25.6ksps, sample point = 1024bin (40ms/frame)

Maintains linearity as low as measured current of 0.02nA

Verification with Actual DUT

BD70522GUL Nano Energy[™] Ultra Low Iq Buck Converter

Datasheet

- Standby Current **Ist** : 50nA (typ)
- Operating Quiescent Current **Iq** : 180nA (typ)

Results of VDD side

Verification with 5 devices

Device	No.1	No.2	No.3	No.4	No.5	Average		
lst [nA]	9.27	7.23	3.26	3.52	2.36	5.13		
Variation width [nApp]	0.546	0.393	0.513	0.446	0.388	0.457		
lq [nA]	145.3	149.4	144.6	141.1	138.7	143.8		
Variation width [nApp]	88.3	33.8	267.1	529.5	11.4	186.0		
		Spike						
lq [nA]	143.7	149.0	141.7	133.2	138.6	141.2		
Variation width [nApp]	0.248	0.346	0.305	0.332	0.201	0.286		

- Variation width smaller than 1nA
- Iq requires removal of spike components

Results of GND side

Verification with 5 devices

Device	No.1	No.2	No.3	No.4	No.5	Average		
lst [nA]	12.30	4.27	4.15	2.53	2.25	5.1		
Variation width [nApp]	3.62	3.32	3.66	4.29	3.66	3.71		
lq [nA]	147.1	150.7	143.8	134.7	140.1	143.3		
Variation width [nApp]	4.69	75.5	38.0	33.7	57.0	41.8		
		Spike - Removed						
lq [nA]	147.1	150.7	143.8	134.7	140.1	143.3		
Variation width [nApp]	3.95	8.64	3.77	3.64	3.85	4.77		

Need to improve variation width

> Add Low Pass Filter etc.

- Research Background and Objective
- Nano Ampere Current Testing
- Proposed Method
- Experiment
- Conclusion

Conclusion

- Proposal of nano current testing method
 - FFT-based DC-AC conversion
- Sub-Nano current detection of 20pA level
 - test time of 40 msec
- Current variation width less than 1nA
 - BD70522GUL VDD side verification
 - > Additional verification required in GND side