5th International Conference on Technology and Social Science 2021 (ICTSS 2021) Dec. 7(Tue) – 9(Thu), Kiryu, Japan, Online

Invited Papers Session 02

Dec. 9, 2021

Comparison of Three Types of Startup Circuits for Self-biasing MOS Reference Current Sources

Souma Yamamoto, T. Hosono, T. Kamio, S. Katayama, K. I. Ebisawa, T. Feng, A. Kuwana, H. Kobayashi, K. Hirai, A. Suzuki, S. Yamada, T. Kato, R. Kitakoga, T. Shimamura, G. Adhikari, N. Ono, K. Miura

Gunma University

Jedat Inc.

Kobayashi Lab. Gunma University

- Research Background
- MOS Drain Current Temperature Characteristics
- Gunma University (GU) Reference Current Source
- Three Types of Startup Circuits
- Startup Circuit 1
- Startup Circuit 2 (CMOS inverter usage)
- Startup Circuit 3 (Capacitor usage)
- Conclusion

- Research Background
- MOS Drain Current Temperature Characteristics
- Gunma University (GU) Reference Current Source
- Three Types of Startup Circuits
- Startup Circuit 1
- Startup Circuit 2 (CMOS inverter usage)
- Startup Circuit 3 (Capacitor usage)
- Conclusion

Next,

Consider and Compare the Three Types of Startup Circuits in terms of Chip area, Power consumption, and Startup operation certainty.

- Research Background
- MOS Drain Current Temperature Characteristics
- Gunma University (GU) Reference Current Source
- Three Types of Startup Circuits
- Startup Circuit 1
- Startup Circuit 2 (CMOS inverter usage)
- Startup Circuit 3 (Capacitor usage)
- Conclusion

MOS Drain Current and Gate Voltage

√I_{DS}

0.001/

- Research Background
- MOS Drain Current Temperature Characteristics
- Gunma University (GU) Reference Current Source
- Three Types of Startup Circuits
- Startup Circuit 1
- Startup Circuit 2 (CMOS inverter usage)
- Startup Circuit 3 (Capacitor usage)
- Conclusion

Gunma University (GU) Reference Current Source

Temperature characteristic cancellation

V₂ Suppression by Self-biasing MOS

Output Current I_{OUT}

- Research Background
- MOS Drain Current Temperature Characteristics
- Gunma University (GU) Reference Current Source
- Three Types of Startup Circuits
- Startup Circuit 1
- Startup Circuit 2 (CMOS inverter usage)
- Startup Circuit 3 (Capacitor usage)
- Conclusion

Need for Startup Circuits

Compared Three Types of Startup Circuit in terms of Chip area, Power consumption, and Startup operation certainty.

- Research Background
- MOS Drain Current Temperature Characteristics
- Gunma University (GU) Reference Current Source
- Three Types of Startup Circuits
- Startup Circuit 1
- Startup Circuit 2 (CMOS inverter usage)
- Startup Circuit 3 (Capacitor usage)
- Conclusion

Startup Circuit 1

Operation of Startup Circuit 1 (All node 0V)

Operation of Startup Circuit 1 (M_{P7} ON)

Operation of Startup Circuit 1 (M_{N10} ON)

Operation of Startup Circuit 1 (I_{OUT} flow)

Operation of Startup Circuit 1 (M_{N12} ON)

Operation of Startup Circuit 1 (M_{N10} OFF)

Demerit of Startup Circuit 1

Demerit

Large power consumption

- Research Background
- MOS Drain Current Temperature Characteristics
- Gunma University (GU) Reference Current Source
- Three Types of Startup Circuits
- Startup Circuit 1
- Startup Circuit 2 (CMOS inverter usage)
- Startup Circuit 3 (Capacitor usage)
- Conclusion

Startup Circuit 2 (CMOS inverter usage)

Operation of Startup Circuit 2 (All node 0V)

Operation of Startup Circuit 2 (M_{P7\sim11} ON)

Operation of Startup Circuit 2 (M_{N10} ON)

Operation of Startup Circuit 2 (I_{OUT} flow)

Operation of Startup Circuit 2 (M_{P7~11} **OFF**, M_{N11} **ON)**

Operation of Startup Circuit 2 (M_{N10} OFF)

Merit and Demerit of Startup Circuit 2

- Research Background
- MOS Drain Current Temperature Characteristics
- Gunma University (GU) Reference Current Source
- Three Types of Startup Circuits
- Startup Circuit 1
- Startup Circuit 2 (CMOS inverter usage)
- Startup Circuit 3 (Capacitor usage)
- Conclusion

Startup Circuit 3 (Capacitor usage)

Operation of Startup Circuit 3 (All node 0V)

Operation of Startup Circuit 3 (C1 Charged)

Operation of Startup Circuit 3 (M_{N11} ON)

Operation of Startup Circuit 3 (I_{OUT} flow)

Operation of Startup Circuit 3 (M_{N10} ON)

Operation of Startup Circuit 3 (C1 discharged)

Operation of Startup Circuit 3 (M_{N11} OFF)

Merit and Demerits of Startup Circuit 3

of Murata Manufacturing Co., Ltd.

Merit 🕄

• Reduction in power consumption (If the rise of V_{DD} is fast)

Demerits

• Increase in chip area

 V_{DD} rise time = 1ms

• Problem of startup certainty

 V_{DD} rise time = 60ms

- Research Background
- MOS Drain Current Temperature Characteristics
- Gunma University (GU) Reference Current Source
- Three Types of Startup Circuits
- Startup Circuit 1
- Startup Circuit 2 (CMOS inverter usage)
- Startup Circuit 3 (Capacitor usage)

Conclusion

Conclusion and Challenges

Conclusion

• The following table shows a comparison of startup circuits.

Types of startup circuits	Chip area	Power consumption	Startup certainty
Startup circuit 1	Good	Poor	Good
Startup circuit 2 (CMOS inverter usage)	Fair	Fair	Good
Startup circuit 3 (Capacitor usage)	Poor	Good	Poor

Each startup circuit has its own advantages and disadvantages. It is necessary to select the optimal startup circuit according to the application of the proposed circuit.

Challenges

Implementing a prototype chip.

Acknowledgements

This work is supported by Adaptable and Seamless Technology Transfer Program through Target-Driven R&D (A-STEP) from Japan Science and Technology Agency (JST) Grant Number JPMJTR201C.

Thank you very much