Dec.9, 2021

Analysis of Switching Characteristics of Dual RESURF 40 V N-LDMOS Transistor with Grounded Field Plate

Hao Yang Du, Jun-ichi Matsuda Anna Kuwana, Haruo Kobayashi

Division of Electronics and Informatics Gunma University

Kobayashi Lab. Gunma University

- Research Background and Objective
- Device Structures and Features
- Simulation Results Turn-on Process Turn-off Process
- Discussion
- Conclusion
- Acknowledgements

- Research Background and Objective
- Device Structures and Features
- Simulation Results
 Turn-on Process
 Turn-off Process
- Discussion
- Conclusion
- Acknowledgements

Research Background

Switches of power converters for automotive applications

High-performance Lateral Double Diffused MOS (LDMOS) transistors

- Low cost: mature Si process can be used
- One-chip integration with other circuits

Attractive in industry

Our previously proposed:

0.18 µm CMOS compatible dual REduced SURface Field (RESURF) 40 V N-LDMOS transistor with grounded field plate

Our research here:

- Detailed analysis of switching loss with the proposed LDMOS
- Clarification of lower loss compared to the conventional LDMOS
- Verification with TCAD simulation

- Research Background and Objective
- Device Structures and Features
- Simulation Results
 Turn-on Process
 Turn-off Process
- Discussion
- Conclusion
- Acknowledgements

Device Structures and Features

[1] J. Matsuda, et. al., "A Low Switching Loss 40 V Dual RESURF LDMOS Transistor with Low Specific On-Resistance", in *Proc. ICMEMIS*, Kiryu, 2017.
 [2] J. Matsuda, et. al., "Low Switching Loss and Scalable 20, 40 V J. DMOS Transistor.

[2] J. Matsuda, et. al., "Low Switching Loss and Scalable 20-40 V LDMOS Transistors with Low Specific On-Resistance", in *Proc. ICTSS*, Kiryu, 2018.

- Research Background and Objective
- Device Structures and Features
- Simulation Results

Turn-on Process Turn-off Process

- Discussion
- Conclusion
- Acknowledgements

Simulation Circuit

Circuit for TCAD device simulation

 R_L changes from 2.13 Ωmm^2 to 10.7 Ωmm^2 ,

 $R_G,$ from 1.07 Ωmm^2 to 5.33 Ωmm^2

for unit LDMOS layout area of 1 mm²

- Research Background and Objective
- Device Structures and Features
- Simulation Results
 Turn-on Process
 Turn-off Process
- Discussion
- Conclusion
- Acknowledgements

Turn-On Behaviors

Current paths for turn-on process when $V_{GS} > V_T$.

Parasitic capacitances in LDMOS transistors.

Capacitance	Conventional	Proposed
Input capacitance	$C_{GS}+C_{GC}$	$\mathrm{C}_{GS} \!$
Feedback capacitance	$C_{GD}+C_{FD}$	C_{GD}
Output capacitance	CD	$C_D + C_{FD}$

Turn-On Simulation Results (Region A)

Conventional device

Turn-On Simulation Results (Region B)

Conventional device

Turn-On Simulation Results (Region C)

Conventional device

Turn-On Simulation Results (Region D)

In on-state

Turn-On Simulation Results (Region A)

Proposed device

Turn-On Simulation Results (Region B)

Turn-On Simulation Results (Region C)

Turn-On Simulation Results (Region D)

In on-state

Turn-On Simulation Results

Turn-on transient behaviors

for low R_G of 1.07 Ω mm² and middle R_L of 5.33 Ω mm² with unit LDMOS layout area of 1 mm².

- Research Background and Objective
- Device Structures and Features
- Simulation Results Turn-on Process
 Turn-off Process
- Discussion
- Conclusion
- Acknowledgements

Turn-Off Behaviors

22/39

Current paths for turn-off process when $V_{GS} > V_T$.

Capacitance	Conventional	Proposed
Input capacitance	$C_{GS}+C_{GC}$	$\mathrm{C}_{GS} \!\!+\! \mathrm{C}_{GC} \!\!+\! \mathrm{C}_{FG}$
Feedback capacitance	$C_{GD}+C_{FD}$	C_{GD}
Output capacitance	CD	C_D+C_{FD}

Parasitic capacitances in LDMOS transistors.

Turn-Off Simulation Results (Region A)

Conventional device

Turn-Off Simulation Results (Region B)

Conventional device

Turn-Off Simulation Results (Region C)^{25/39}

Conventional device

Turn-Off Simulation Results (Region D)

Conventional device

In off-state

Turn-Off Simulation Results (Region A)

Proposed device

Turn-Off Simulation Results (Region B)

Proposed device

Turn-Off Simulation Results (Region C)

Proposed device

Turn-Off Simulation Results (Region D)

Proposed device

In off-state

Turn-Off Simulation Results

Turn-off transient behaviors

for low R_G of 1.07 Ω mm² and middle R_L of 5.33 Ω mm² with unit LDMOS layout area of 1 mm².

- Research Background and Objective
- Device Structures and Features
- Simulation Results
 Turn-on Process
 Turn-off Process
- Discussion
- Conclusion
- Acknowledgements

Switching Loss for R_L, R_G

Dependences of switching losses of

(a) R_L under a low R_G of 1.07 Ω mm² (high-speed switching) (b) R_G under a high R_L of 10.7 Ω mm² (light load) at unit LDMOS layout area of 1 mm².

Switching Frequency Dependence

The lowest value $E_{Loss_P}/$ E_{Loss_C} of 0.31 at f = 3 MHz, D_{ON} = 0.1

- Research Background and Objective
- Device Structures and Features
- Simulation Results
 Turn-on Process
 Turn-off Process
- Discussion
- Conclusion
- Acknowledgements

Conclusion

- Analysis of switching characteristics of the proposed LDMOS by changing R_L and R_G
- The proposed device has considerably lower feedback capacitance (C_{GD}), although it has higher output capacitance (C_D+C_{FD}).
- Under actual use condition, this capacitance structure decreases switching loss
- The lowest value of E_{Loss_P} / E_{Loss_C} is 0.31 at f = 3 MHz, $D_{ON} = 0.1$.

The proposed device promises drastically low switching loss under actual use condition.

- Research Background and Objective
- Device Structures and Features
- Simulation Results
 Turn-on Process
 Turn-off Process
- Discussion
- Conclusion
- Acknowledgements

Acknowledgments

- AdvanceSoft Corporation for providing 3D TCAD simulator.
- Japan Science and Technology Agency for assistance of this simulator development with A-STEP program.

Thank you for your listening

Kobayashi Lab. Gunma University