

Study of Helix Functions and Multi-Source Rauch Filters

Ph.D. Candidate: Tri Minh Tran^{*},

Prof. Anna Kuwana, and Prof. Haruo Kobayashi

Gunma University, Japan

Outline

1. Research Background

- Motivation, objectives and achievements
- Helix functions and superposition formula
- 2. Ringing Test for Rauch Low-Pass Filter
- Behaviors of fully differential op amp
- Stability test for fully differential Rauch LPF
- **3. Analysis of Rauch Complex Filter**
- Spectrum of polyphase signals
- Design of 4th-order Rauch complex filter
- 4. Conclusions

1. Research Background

Motivation of Helix Waves and Multi-Source Circuits

1. Research Background Stability Test for Electronic Systems

1. Research Background

Innovation of This Work

Merits of complex numbers
Ouse of complex functions
→ Fundamental model of motion in both time and frequency domains
Ouperposition formula for multi-source networks
Nichols chart of self-loop function
→ A useful tool for stability test

Easily integrated in network analyzers/

Merits of Rauch filters

- **o Easiest selection of components**
- Lowest power consumption
- Simplest design in fully differential forms and complex topologies

Nichols plot of self-loop function

Rauch complex filter

1. Research Background Objectives of Study

- Definitions of helix waves and polyphase signals
- Derivation of transfer functions in multi-source networks using superposition formula
- Investigation of operating regions of 4th-order fully differential Rauch low-pass filter
- → Over-damping (high delay in rising time)
- Critical damping (max power propagation)
- → Under-damping (overshoot and ringing)
- Derivation of transfer function and image rejection ratio for 4th-order Rauch complex filter

1. Research Background Achievements of Study

Superposition formula for multi-source networks

Time (s)

Definitions of helix waves

$$V_{he^{-}}(t) = Ahe(-\omega_0 t - \theta_0) \qquad V_{he^{+}}(t) = Ahe(\omega_0 t + \theta_0)$$

Amplitud

M

Cos(er)

Amplitude

[V]

-Sin(cot)

Stability Test for a 4th-order Rauch LPF

Analysis of a 4th-order Rauch complex filter

1. Research Background Helix and Sinusoidal Waves

Positive helix function

$$V_{he+}(t) = Ahe(\omega_0 t + \theta_0) = A\sqrt{2}e^{j(\omega_0 T_0 + \theta_0)}$$
$$= A\cos(\omega_0 t + \theta_0) + jA\sin(\omega_0 t + \theta_0)$$

Spectrum of helix waves

Negative helix function

$$V_{he-}(t) = Ahe(-\omega_0 t - \theta_0) = A\sqrt{2}e^{j(-\omega_0 T_0 - \theta_0)}$$
$$= A\cos(-\omega_0 t - \theta_0) + jA\sin(-\omega_0 t - \theta_0)$$

Spectrum of sine wave

1. Research Background

Superposition Theorem for Multi-Source Systems

Superposition formula:

$$V_{O}(t)(\sum_{i=1}^{n}\frac{1}{Z_{i}} + \sum_{i=1}^{n}\frac{1}{Z_{si}} + \frac{1}{\sum_{k=1}^{n}\frac{1}{Z_{pik}}}) = \sum_{i=1}^{n}\left(\frac{V_{i}(t)}{Z_{i}} + I_{ai}(t) - I_{gi}(t)\right)$$

- V_o(t) : Voltage at one node
- V_i(t) : Input voltage sources
- I_{ai}(t) : Ahead-toward current sources
- l_{gi}(t) : Ground-toward current sources
- Z_{i, si, pi}(t): Impedances at each branch

 Multi-source systems, feedback networks (op amps, amplifiers, polyphase filters, complex filters...)

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Helix functions and superposition formula
- 2. Ringing Test for Rauch Low-Pass Filter
- Behaviors of fully differential op amp
- Stability test for fully differential Rauch LPF
- 3. Analysis of Rauch Complex Filter
- Spectrum of polyphase signals
- Design of 4th-order Rauch complex filter
- 4. Conclusions

2. Ringing Test for Rauch Low-Pass Filter Self-loop Function in A Transfer Function

Linear system

Transfer function

$$H(\boldsymbol{\omega}) = \frac{V_{out}(\boldsymbol{\omega})}{V_{in}(\boldsymbol{\omega})} = \frac{A(\boldsymbol{\omega})}{1 + L(\boldsymbol{\omega})}$$

Model of a linear system

$$H(\boldsymbol{\omega}) = \frac{b_0(j\boldsymbol{\omega})^n + \dots + b_{n-1}(j\boldsymbol{\omega}) + b_n}{a_0(j\boldsymbol{\omega})^n + \dots + a_{n-1}(j\boldsymbol{\omega}) + a_n}$$

 $A(\omega)$: Numerator function $H(\omega)$: Transfer function $L(\omega)$: Self-loop functionVariable: angular frequency (ω)

○Polar chart → Nyquist chart
 ○Magnitude-frequency plot
 ○Angular-frequency plot
 ○Magnitude-angular diagram → Nichols diagram

2. Ringing Test for Rauch Low-Pass Filter Operating Regions of 4th-Order System

Pascal's Triangle

•Under-damping: **1**:2:3:2:1

$$H_{1}(\omega) = \frac{1}{(j\omega)^{4} + 2(j\omega)^{3} + 3(j\omega)^{2} + 2j\omega + 1}$$

•Critical damping: 1:4:6:4:1
$$H_{2}(\omega) = \frac{1}{(j\omega)^{4} + 4(j\omega)^{3} + 6(j\omega)^{2} + 4j\omega + 1}$$

•Over-damping: 1:9:10:9:1
$$H_{3}(\omega) = \frac{1}{(j\omega)^{4} + 9(j\omega)^{3} + 10(j\omega)^{2} + 9j\omega + 1}$$

Bode plot of transfer function

Nichols plot of self-loop function

3. Ringing Test for Rauch Low-Pass Filter Behaviors of Fully Differential Op Amp

Small signal model

Bode plot of open-loop function $A(\omega)$

Applying superposition formula at each node

$$V_{a}\left[\frac{1}{R_{s}}+j\omega(C_{GS1}+C_{GD1})\right] = \frac{V_{in}}{R_{s}}+V_{b}j\omega C_{GD1};$$

$$V_{b}\left[j\omega(C_{GD1}+C_{DB1}+C_{GS2}+C_{GD2})+\frac{1}{R_{D1}}+\frac{j\omega C_{c}}{1+j\omega R_{c}C_{c}}\right]$$

$$=V_{a}(j\omega C_{GD1}-g_{m1})+V_{out}\left(j\omega C_{GD2}+\frac{j\omega C_{c}}{1+j\omega R_{c}C_{c}}\right);$$

$$V_{out}\left[j\omega(C_{GD2}+C_{DB2})+\frac{j\omega C_{c}}{1+j\omega R_{c}C_{c}}+\frac{1}{R_{D2}}\right] = V_{b}\left(j\omega C_{GD2}+\frac{j\omega C_{c}}{1+j\omega R_{c}C_{c}}-g_{m2}\right);$$

Open-loop function $A(\omega)$

$$A(\omega) = \frac{b_0(j\omega)^4 + b_1(j\omega)^3 + b_2(j\omega)^2 + b_3(j\omega)^1 + b_4}{a_0(j\omega)^5 + a_1(j\omega)^4 + a_2(j\omega)^3 + a_3(j\omega)^2 + a_4j\omega + 1}$$

Self-loop function L(ω)

 $L(\omega) = a_0 (j\omega)^5 + a_1 (j\omega)^4 + a_2 (j\omega)^3 + a_3 (j\omega)^2 + a_4 j\omega;$

Nichols plot of self-loop function $L(\omega)$

3. Ringing Test for Rauch Low-Pass Filter Analysis of Fully Differential Rauch Low-Pass Filter

Transfer function $H(\omega)$ and self-loop function $L(\omega)$

$$H(\omega) = \frac{b_0}{1 + a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega};$$

$$L(\omega) = a_0 (j\omega)^4 + a_1 (j\omega)^3 + a_2 (j\omega)^2 + a_3 j\omega;$$

Here, parameters are given as

Operating regions

- Over-damping (C3 = 0.1 nF),
- Critical damping (C3 = 0.5 nF),
- Under-damping (C3 = 1.4 nF).

$$a_{1} = R_{2}R_{3}\left(R_{5} + R_{6} + \frac{R_{5}R_{6}}{R_{4}}\right)C_{1}C_{2}C_{4} + R_{5}R_{6}\left(R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}}\right)C_{2}C_{3}C_{4}; a_{3} = \left(R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}}\right)C_{2} + \left(R_{5} + R_{6} + \frac{R_{5}R_{6}}{R_{4}}\right)C_{4}; a_{3} = \left(R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}}\right)C_{2} + \left(R_{5} + R_{6} + \frac{R_{5}R_{6}}{R_{4}}\right)C_{4}; a_{3} = \left(R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}}\right)C_{2} + \left(R_{5} + R_{6} + \frac{R_{5}R_{6}}{R_{4}}\right)C_{4}; a_{3} = \left(R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}}\right)C_{2} + \left(R_{5} + R_{6} + \frac{R_{5}R_{6}}{R_{4}}\right)C_{4}; a_{3} = \left(R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}}\right)C_{2} + \left(R_{5} + R_{6} + \frac{R_{5}R_{6}}{R_{4}}\right)C_{4}; a_{3} = \left(R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}}\right)C_{2} + \left(R_{5} + R_{6} + \frac{R_{5}R_{6}}{R_{4}}\right)C_{4}; a_{3} = \left(R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}}\right)C_{2} + \left(R_{5} + R_{6} + \frac{R_{5}R_{6}}{R_{4}}\right)C_{4}; a_{4} = R_{2}R_{3}R_{5}R_{6}C_{1}C_{2}C_{3}C_{4}; a_{4} = R_{2}R_{3}R_{5}R_{6}C_{1}C_{2}C_{3}C_{4}; a_{4} = R_{2}R_{3}R_{5}R_{6}C_{1}C_{2}C_{3}C_{4}; a_{5} = R_{2}R_{3}R_{5}R_{6}C_{1}C_{2}C_{3}C_{4}; a_{4} = R_{2}R_{3}R_{5}R_{6}C_{1}C_{2}C_{3}C_{4}; a_{5} = R_{2}R_{3}R_{5}R_{6}C_{1}C_{2}C_{3}C_{4}; a_{4} = R_{2}R_{3}R_{5}R_{6}C_{1}C_{2}C_{3}C_{4}; a_{5} = R_{2}R_{3}R_{5}R_{6}C_{1}C_{2}C_{3}C_{4}; a_{6} = R_{2}R_{3}R_{5}R_{6}C_{1}C_{2}C_{3}C_{4}; a_{6} = R_{2}R_{3}R_{5}R_{6}C_$$

3. Ringing Test for Rauch Low-Pass Filter Behaviors of Fully Differential Rauch Low-Pass Filter

Nichols plot of self-loop function

Transient response 2.0 _____ Over-damping _____ Critical damping _____ Under-damping 1.5 1.0 Amplitude (V) 0.5 0.0 -0.5 -1.0 -1.5 -2.0 25 us 75 us 0 50 us 100 us Time (s)

Over-damping: →Phase margin is 74 degrees. Critical damping:

→Phase margin is 68 degrees.
Under-damping:

 \rightarrow Phase margin is 59 degrees.

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Helix functions and superposition formula
- 2. Ringing Test for Rauch Low-Pass Filter
- Behaviors of fully differential op amp
- Stability test for fully differential Rauch LPF
- **3. Analysis of Rauch Complex Filter**
- Spectrum of polyphase signals
- Design of 4th-order Rauch complex filter
- 4. Conclusions

3. Analysis of Rauch Complex Filter Characteristics of Low-IF Receiver

Analysis of Rauch Complex Filter 3. **Positive Polyphase Signals on Frequency Domain**

Positive polyphase signals Re ⊀ Re $V_{p2} = jV_p$ Angular requency COS (0) (rad/s) Time (s) 3 $V_{p3} = -V_p$ (b) Spectrum of cosine wave (a) Cosine wave on real axis , Im Re anti-clockwise -w ≮ Re $V_{p4} = -jV_p$ Angular jsinot requency $S_{Pos-poly} \{ V_1(t); V_2(t); V_3(t); V_4(t) \}$ (rad/s) $= \left\{1; +j; (+j)^{2}; (+j)^{3}\right\} V_{pos}(t)$ (d) Spectrum of plus sine wave (c) Plus sine wave on imaginary axis Amplitude Alm. Amplitude [V]Re (V) $S_p(\omega_0)$ Sin(ot) 0 Angular +10 Angular frequency Cos(wt) frequency Time (s) $\cos \omega t + j \sin \omega t = e^{j\omega t}$ (rad/s) 0 wo Amplitude * (rad/s) -wn M

(e) Positive angular frequency wave

(c) Angular frequency plane for polyphase signals

(f) Spectrum of positive angular frequency wave

3. Analysis of Rauch Complex Filter Negative Polyphase Signals on Frequency Domain

3. Analysis of Rauch Complex Filter Polyphase Signals in All Frequency Domains

3. Analysis of Rauch Complex Filter Design Principle for Complex Filter Networks

Frequency shifting of real low-pass filter in all frequency domains \rightarrow an active complex filter

 ω_{cr} : cross angular frequency

20

3. Analysis of Rauch Complex Filter Analysis of 4th-Order Rauch Complex Filter

Image rejection ratio

$$IRR(\omega) = \left(\frac{a_0(j\omega)^2 + a_{N1}j\omega + a_{N2}}{a_0(j\omega)^2 + a_{P1}j\omega + a_{P2}}\right) \left(\frac{a_3(j\omega)^2 + a_{N4}j\omega + a_{N5}}{a_3(j\omega)^2 + a_{P4}j\omega + a_{P5}}\right)$$

Applying superposition formula at each node

$$\begin{split} V_{a} &\left(\frac{1}{R_{1}} + j\omega C_{1} + \frac{1}{R_{2}} + \frac{1}{R_{3}}\right) = \frac{V_{in}}{R_{1}} + (+j)^{2} V_{a} j\omega C_{1} + \frac{V_{b}}{R_{2}} + \frac{(+j)^{2} V_{c}}{R_{3}};\\ V_{b} &\left(\frac{1}{R_{2}} + j\omega C_{2} + \frac{1}{R_{4}}\right) = \frac{V_{a}}{R_{2}} + (+j)^{2} V_{c} j\omega C_{2} + \frac{(+j)^{3} V_{c}}{R_{4}};\\ V_{c} &= \left[V_{b} - (+j)^{2} V_{b}\right] A(\omega); V_{out} = \left[V_{e} - (+j)^{2} V_{e}\right] A(\omega);\\ V_{d} &\left(\frac{1}{R_{5}} + j\omega C_{3} + \frac{1}{R_{6}} + \frac{1}{R_{7}}\right) = \frac{V_{c}}{R_{5}} + (+j)^{2} V_{d} j\omega C_{3} + \frac{V_{e}}{R_{6}} + \frac{(+j)^{2} V_{out}}{R_{7}};\\ V_{e} &\left(\frac{1}{R_{6}} + j\omega C_{4} + \frac{1}{R_{8}}\right) = \frac{V_{d}}{R_{6}} + (+j)^{2} V_{out} j\omega C_{4} + \frac{(+j)^{3} V_{out}}{R_{8}}; \end{split}$$

Positive transfer function

$$H_{P}(\boldsymbol{\omega}) = \left(\frac{b_{0}}{a_{0}(j\boldsymbol{\omega})^{2} + a_{P1}j\boldsymbol{\omega} + a_{P2}}\right) \left(\frac{b_{1}}{a_{3}(j\boldsymbol{\omega})^{2} + a_{P4}j\boldsymbol{\omega} + a_{P5}}\right);$$

Negative transfer function

$$H_{N}(\omega) = \left(\frac{b_{0}}{a_{0}(j\omega)^{2} + a_{N1}j\omega + a_{N2}}\right) \left(\frac{b_{1}}{a_{3}(j\omega)^{2} + a_{N4}j\omega + a_{N5}}\right);$$
21

3. Analysis of Rauch Complex Filter Behaviors of 4th-Order Rauch Complex Filter

Outline

- 1. Research Background
- Motivation, objectives and achievements
- Helix functions and superposition formula
- 2. Ringing Test for Rauch Low-Pass Filter
- Behaviors of fully differential op amp
- Stability test for fully differential Rauch LPF
- **3. Analysis of Rauch Complex Filter**
- Spectrum of polyphase signals
- Design of 4th-order Rauch complex filter
- 4. Conclusions

4. Comparison

Features	Proposed formula	Conventional Superposition	Millan's theorem
Effects of all actuating sources	At one time	Several times	At one time
Transfer function accuracy	Yes	Νο	Νο
Single-input network analysis	Yes	Yes	Yes
Polyphase network analysis	Yes	Νο	Νο
Complex network analysis	Yes	Νο	Νο
Image rejection ratio accuracy	Yes	Νο	Νο

4. Discussions

- Ringing test for electronic networks using Nichols chart of self-loop function
- → Observation of phase margin can help us determine the operating regions of high-order systems.
- Transfer function and image rejection ratio give useful information about the behaviors of polyphase filters and complex filters.
- Superposition formula: fundamental network analysis theory for multi-source systems
- → Compute the effects of all sources at one time,
- → Get the transfer function faster, and
- → **Reduce** the network complexity.

4. Conclusions

This work:

- Definitions of helix functions and polyphase signals
- Proposal of superposition formula for deriving transfer function in multi-source networks
- Stability test for 4th-order fully differential Rauch LPF
- Derivation of transfer function and image rejection ratio for 4th-order Rauch complex filter

→Theoretical concepts of stability test are verified by laboratory simulations.

Future work:

- Stability test for parasitic components in transmission lines, printed circuit boards, physical layout layers
- Investigation of DC offset and IQ mismatches in polyphase filters and complex filters

References

[1] M. Tran, A. Kuwana, H. Kobayashi, "*Derivation of Loop Gain and Stability Test for Multiple Feedback Low Pass Filter Using Deboo Integrator*", The 8th IIAE Int. Conf. on Industrial Application Engineering, Shimane, Japan, March, 2020.

[4] M. Tran, A. Kuwana, H. Kobayashi "*Ringing Test for Negative Feedback Amplifiers*" 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON 2020), Vancouver, Canada, Nov. 2020.

[6] M. Tran, A. Kuwana, H. Kobayashi, "*Design of Active Inductor and Stability Test for Passive RLC Low Pass Filter*", 10th Int. Conf. on Computer Science, Engineering and Applications (CCSEA 2020), London, United Kingdom, Jul. 2020.

[7] M. Tran, A. Kuwana, H. Kobayashi, "*Ringing Test for Tow-Thomas Low-Pass Filters*", Int. Conf. on Promising Electronic Technologies (ICPET 2020), Jerusalem, Palestine, 16-17, Dec. 2020.

[9] M. Tran, A. Kuwana, H. Kobayashi, "*Study of Behaviors of Electronic Amplifiers using Nichols Chart*", IEEE the 3rd Int. Conf. on Electronics and Communication Engineering (ICECE 2020), Xi'an, China, 14-16, Dec. 2020.

[10] M. Tran, "*Study of Multiphase Networks, Noise Reduction for DC-DC Converters, and Stability Test for Electronic Systems*", ATS Doctoral Dissertation Award Contest, 29th IEEE Asian Test Symposium, Penang, Malaysia, Nov. 2020.

[12] M. Tran, A. Kuwana, H. Kobayashi, "*Ringing Test for 2nd-order Sallen-Key Low-Pass Filters*", IEEE 2nd Int. Conf. on Circuits and Systems (ICCS 2020), Chengdu, China, 10-13, Dec. 2020.

[17] M. Tran, A. Hatta, A. Kuwana, H. Kobayashi, "*Derivation of Image Rejection Ratio for High-Order Complex Filters,*" 6th Taiwan and Japan Conf. on Circuits and Systems (TJCAS 2020), Nov. 2020.

[18] M. Tran, A. Kuwana, H. Kobayashi, "*Ringing Test for 3rd-order Ladder Low-Pass Filters*", 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON 2020), NY, USA, Oct. 2020.

[20] M. Tran, A. Kuwana, H. Kobayashi, "*Derivation of Loop Gain and Stability Test for Low Pass Tow-Thomas Biquad Filter*", 10th Int. Conf. on Computer Science, Engineering and Applications (CCSEA 2020), United Kingdom, Jul. 2020.

[21] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Mathematical Analysis and Design of 4-Stage Passive RC Network in RF Front-End System*", 3rd Int. Conf. on Technology and Social Science (ICTSS 2019), Kiryu, Japan, May, 2019.

[22] M. Tran, A. Hatta, A. Kuwana, H. Kobayashi, "*Design of 6th-order passive quadrature signal generation network based on polyphase filter*", IEEE 15th Int. Conf. on Solid-State and Integrated Circuit Technology (ICSICT2020), Kunming, China, Nov. 2020.

[23] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Mathematical Model and Analysis of 4-Stage Passive RC Polyphase Filter for Low-IF Receiver*", Journal of Mechanical and Electrical Intelligent System, vol. 3, no. 2, May 2020.

[25] M. Tran, N. Kushita, A. Kuwana, H. Kobayashi, "*Flat Pass-Band Method with Two RC Band-Stop Filters for 4-Stage Passive RC Polyphase Filter in Low-IF Receiver Systems*", 3th IEEE Int. Conf. on ASIC (ASICON 2019), Oct. 2019.

Thank you very much!

