

Revisit to Accurate ADC Testing with Incoherent Sampling Using Proper Sinusoidal Signal and Sampling Frequencies

2021 International Test Conference

ROHM Co,. Ltd. Keno Sato, Takashi Ishida, Toshiyuki Okamoto, Tamotsu Ichikawa Gunma University Jianglin Wei, Yujie Zhao, Shogo Katayama, Shuhei Yamamoto Takayuki Nakatani, Anna Kuwana, Kazumi Hatayama Haruo Kobayashi

Research Objective

To achieve high accuracy

Signal-to-[noise + distortion] ratio (SINAD) testing of ADC w/o any complicated conditions

Achievements

- Simplified Condition
- ✓ High Accuracy

Outline

- Research Background
- Difficulty of SINAD Testing
 - Coherent Sampling
 - Incoherent Sampling
- Likelihood of Incoherent Sampling improvement
- Exploration of Optimized Signal Frequency
- Recommendation of Signal Frequency
- Conclusion

Research Background

IoT Sensor Network

ADC is a key component of IoT system

Difficulty of SINAD Testing

Coherent Sampling

Difficult to setup the environment w/o complicated condition

Difficulty of SINAD Testing

Incoherent Sampling

Spectral leakage of window function affects SINAD

Likelihood of Incoherent Sampling Improvement

Figure out histogram of signal frequency for 12bit ADC

> 99.97 kHz (Initial)

➤ 100.318107302943 kHz (≈ Golden ratio)

Golden ratio frequency is more random than initial one

Likelihood of Incoherent Sampling Improvement

Simulation for Comparison btw 99.97 kHz and 100.3181... kHz

Condition

- ✓ Signal frequency
 •99.97 kHz
 •100.318107302943 kHz
 (≈Golden ratio)
- ADC (Functional model)
 12 bit, 1.0 Msps
- ✓ Window function Flat-top
- ✓ FFT size4096 points
- Variation data
 200 points different phase

Spectral leakage is reduced

SINAD is improved in simulation

Improvement by 0.78 dB **(**

Likelihood of Incoherent Sampling Improvement

Validation for Comparison btw 99.97 kHz and 100.318 kHz

Condition

- ✓ Signal frequency
 •99.97 kHz
 •100.318 kHz
 (≅Golden ratio)
- ADC (BU79100G)
 12 bit, 1.0 Msps
- ✓ Window function Flat-top
- ✓ FFT size4096 points
- ✓ Variation data 200 samples

The same tendency as simulation

SINAD is improved using actual samples

Investigation Frequency Response of SINAD w/ Flat-Top Window

Condition

- ✓ Signal frequency 99.5 kHz ~ 100.5 kHz 1 Hz step, 1001 points
- ADC (Functional model)
 12 bit, 1.0 Msps
- ✓ Window function Flat-top
- ✓ FFT size4096 points

Depending on signal frequency, SINAD varies from 72.37 dB to 73.84 dB

Frequency response of window function appears

Investigation Frequency Response of Sine Wave w/ Flat-Top Window

Condition

- ✓ Signal frequency
 - •99.97 kHz (Initial)
 - •100.318 kHz (≅ Golden Ratio)
 - •99.609 kHz (≅Coherent)
 - •99.854 kHz (≅Coherent)
 - •100.098 kHz (≅Coherent)
 - •100.342 kHz (≅Coherent)
- ADC (Functional model) Numerical, 1.0 Msps
- ✓ Window function Flat-top
- ✓ FFT size4096 points

Frequency response of window function affects spectral leakage

[dB]

Investigation Frequency Response of Spectral Leakage w/ Flat-Top Window

Condition

- Signal frequency
 99.5 kHz ~ 100.5 kHz
 1 Hz step, 1001 points
- ADC (Functional model) Numerical, 1.0 Msps
- ✓ Window function Flat-top
- ✓ FFT size
 4096 points
- ✓ Definition of spectral leakage Fundamental frequency ±100 bin in case of 4096 points

Spectral Leakage Frequency Response(Flat-Top Window)

Confirmation of Optimized Signal Frequency for SINAD

Condition

- ✓ Signal frequency
 99.5 kHz ~ 100.5 kHz
 1 Hz step, 1001 points
- ✓ ADC (Functional model)
 - •10bit, 1.0 Msps
 - •12bit, 1.0 Msps
 - •14bit, 1.0 Msps
 - •16bit, 1.0 Msps
- ✓ Window function Flat-top

✓ FFT size4096 points

Consideration of signal frequency for over 12bit ADC SINAD

Confirmation of Sampling Frequency Variation

Condition

- Signal frequency
 79.5 kHz ~ 80.5 kHz (0.8 Msps)
 119.5 kHz ~ 120.5 kHz (1.2 Msps)
 1 Hz step, 1001 points
- ADC (Functional model)
 Numerical, 0.8 Msps
 Numerical, 1.2 Msps
- ✓ Window function Flat-top
- ✓ FFT size4096 points

Coherent frequencies will be able to obtain accurate SINAD

Recommendation for Signal Frequency

How to Decide Coherent Frequency for Incoherent Setup

N_{sin} $F_{\rm s}$

 $F_{coherence} = N_{sin} \cdot F_s / N_{samples}$

: Number of sinwave periods in total samples : Sampling frequency N_{samples} : Number of samples

Set signal frequency according to the FFT size

Conclusion

ADC SINAD Testing

Simplified Condition
 Realized incoherent sampling setup
 w/o any complicated conditions
 such as coherent sampling setup

✓ High Accuracy

Found out appropriate signal frequency for high accuracy testing w/ flat-top window