Study on Current-Driven IGBT Driver Circuit

Yudai Abe, Akio Iwabuchi, Jun-ichi Matsuda, Souma Yamamoto, Anna Kuwana, Haoyang Du, Takafumi Kamio, Takashi Hosono, Haruo Kobayashi

Gunma University
Sanken Electric Co. Ltd
OUTLINE

• Research Background and Objective

• IGBT Evaluation Circuit

• IGBT Current Drive Simulation
 — Current Gate Driver Circuit
 — Simulation Results

• Gate Current Automatic Control

• Conclusion and Challenges
OUTLINE

• Research Background and Objective

• IGBT Evaluation Circuit

• IGBT Current Drive Simulation
 — Current Gate Driver Circuit
 — Simulation Results

• Gate Current Automatic Control

• Conclusion and Challenges
IGBTs have advantages of both MOSFETs and bipolar transistors.

Used in a wide range of applications as power semiconductor devices.

Development of IGBT and its driver circuit is important.
IGBT and Driver Circuit

IGBT

(Insulated Gate Bipolar Transistor)

Input part is MOSFET
Output part is bipolar transistor

Advantages
- Fast operating speed
- Large current amplification factor (~1.2kA)
- High withstand voltage (~3.3kV)

Large gate capacitance → Driver circuit is difficult
Objective

IGBT circuit

Parasitic capacitance and tail current → Switching loss
Parasitic inductance → Excessive overshoot
Change drive resistance during switching → Complex control

Current Drive

Reduction of Switching loss and Excessive overshoot
Simplification of control design
OUTLINE

• Research Background and Objective

• IGBT Evaluation Circuit
 — IGBT Current Drive Simulation
 — Current Gate Driver Circuit
 — Simulation Results

• Gate Current Automatic Control

• Conclusion and Challenges
Voltage-Driven IGBT Evaluation Circuit (1/2)

Input voltage V_1

V_g turns on IGBT

I_c gradually flows

L_1 500μH

L_2 145nH

R_g I$_g$ V$_c$ Tr$_1$

V_1 16V

V_g 16V

V_c 360mA

I_g -360mA

I_c 500V

I_c 50mA

0A

0μs 50μs 100μs
Voltage-Driven IGBT Evaluation Circuit (2/2)

- V_1 becomes 0
- V_g turns off IGBT
- I_c gradually decreases

Diagram:
- L_1: 500μH
- L_2: 145nH
- R_g
- V_1
- V_g
- V_c
- I_g
- I_c
- D_1

Waveforms:
- V_1: 16V, 0V
- V_g: 16V, 0V
- I_g: 360mA, -360mA
- V_c: 500V, 0V
- I_c: 50A, 0A

Timeline: 0μs, 50μs, 100μs
Overshoot and Switching Loss during Turn-off

Change gate resistance R_g from 30Ω to 300Ω

![Circuit Diagram]

$\text{L}_1 = 500\mu\text{H}$

$\text{L}_2 = 145\text{nH}$

I_c = 450V

V_1

V_g = V_c

V_2

I_g

R_g

Tr_1

D_1

Switching Loss [mJ]

Overshoot [V]

300Ω

270Ω

240Ω

210Ω

180Ω

150Ω

120Ω

90Ω

60Ω

50Ω

40Ω

30Ω
OUTLINE

• Research Background and Objective

• IGBT Evaluation Circuit

• IGBT Current Drive Simulation
 — Current Gate Driver Circuit
 — Simulation Results

• Gate Current Automatic Control

• Conclusion and Challenges
Current Gate Driver Circuit (1/2)
Current Gate Driver Circuit (2/2)

Consider 4 steps and draw different currents.
OUTLINE

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Gate Current Automatic Control
- Conclusion and Challenges
IGBT Turn-off Characteristics

Control gate voltage by flowing I_g

Turn-on Current Source

Current Gate Driver Circuit

L_1: 500μH
L_2: 145nH

V_g, V_c

I_c, $450V$

D_1, I_g

I_g, 500μA to 225mA

V_g, $16V$ to 0V

V_c, $500V$ to 0V

I_c, 0A to 50A

60.90μs, 61.65μs, 62.40μs
Control of Gate Voltage by Gate Current (Step1)

Step1

V_g: Saturation voltage to Miller voltage

No effects on switching loss and overshoot
Control of Gate Voltage by Gate Current (Step2)

Step 2

\(V_g \): Miller period of IGBT

Trade-off between switching loss and slew rate

Switching loss can be reduced
Control of Gate Voltage by Gate Current (Step3)

Step3

\[V_g : \text{Miller voltage to threshold voltage} \]

\[\text{Trade-off between switching loss and overshoot} \]

\[\text{Overshoot can be reduced} \]
Step 4

\(V_g \) : Threshold voltage to 0

\(I_g \) : Uncontrollable due to I-V characteristics of MOSFETs

No effects on switching loss and overshoot
Comparison with Voltage Drive

Switching Loss : **-35%**, Overshoot : **-32%**
OUTLINE

• Research Background and Objective

• IGBT Evaluation Circuit

• IGBT Current Drive Simulation
 — Current Gate Driver Circuit
 — Simulation Results

• Gate Current Automatic Control

• Conclusion and Challenges
Gate Current Automatic Control

Judge the operating region from the voltage value of the gate, and determine the control current.

4 regions:
- **I₂~I₅**
- **I₂**
- **I₃**
- **I₄**
- **I₅**

450mA
- **I₂**
- **I₃**
- **I₄**
- **I₅**

225mA

0mA

Current Source

Turn-on Current Source

Current Gate Driver Circuit

FF Circuit
FF circuit time chart

Automatic control only for the time in each operating region

Corresponding operating region

Current Mirror

I₁

S

S₁

S₂

S₃

S₄

Low

CLK

I₂

I₃

I₄

I₅

I₆

gate

RSFF

DFF

S

Q₁

Q₂

D

Q₂

CLK

Corresponding operating region

Max

min

S

1

0

R

1

0

Q₁

1

0

Q̅ (D)

1

0

CLK

1

0

Q₂

1

0
Comparison of Voltage Drive and Automatic Control Current Drive

Switching Loss : -31%, Overshoot : -31%
OUTLINE

• Research Background and Objective

• IGBT Evaluation Circuit

• IGBT Current Drive Simulation
 — Current Gate Driver Circuit
 — Simulation Results

• Gate Current Automatic Control

• Conclusion and Challenges
Conclusion

- Proposal of current drive circuit to control gate voltage of IGBT

- During turn-off, when compared to conventional voltage drive:
 - Current Drive \rightarrow switching loss (-35%), overshoot (-32%)
 - Automatic Control \rightarrow switching loss (-31%), overshoot (-31%)

Challenges

- Automatic control of current value in each operating region