ITC-CSCC 2021 June 28th(Mon) – 30th(Wed) Grand Hyatt Jeju, Republic of Korea

Study on Current-Driven IGBT Driver Circuit

Yudai Abe, Akio Iwabuchi, Jun-ichi Matsuda, Souma Yamamoto, Anna Kuwana, Haoyang Du, Takafumi Kamio, Takashi Hosono, Haruo Kobayashi

> Gunma University Sanken Electric Co. Ltd

Kobayashi Lab. Gunma University

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation

 Current Gate Driver Circuit
 Simulation Results
- Gate Current Automatic Control
- Conclusion and Challenges

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation

 Current Gate Driver Circuit
 Simulation Results
- Gate Current Automatic Control
- Conclusion and Challenges

Research Background

IGBTs have advantages of both MOSFETs and bipolar transistors

Used in wide range of applications as power semiconductor devices

Development of IGBT and its driver circuit is important

IGBT (Insulated Gate Bipolar Transistor)

Input part is **MOSFET** Output part is bipolar transistor

Advantages

- Fast operating speed
- Large current amplification factor (~1.2kA)
 - High withstand voltage (~3.3kV)

Large gate capacitance

Driver circuit is difficult

Objective

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation

 Current Gate Driver Circuit
 Simulation Results
- Gate Current Automatic Control
- Conclusion and Challenges

ITC-CSCC 2021 8/26 Voltage-Driven IGBT Evaluation Circuit (1/2)

Voltage-Driven IGBT Evaluation Circuit (2/2)

ITC-CSCC 2021

Overshoot and Switching Loss during Turn-off

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation

 Current Gate Driver Circuit
 Simulation Results
- Gate Current Automatic Control
- Conclusion and Challenges

Current Gate Driver Circuit (1/2)^{12/26}

Current Gate Driver Circuit (2/2)

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation

 Current Gate Driver Circuit
 Simulation Results
- Gate Current Automatic Control
- Conclusion and Challenges

IGBT Turn-off Characteristics

Control of Gate Voltage by Gate Current (Step1)

60.90µs 61.65µs 62.40µs

Control of Gate Voltage by Gate Current (Step2)

Step2

 V_g : Miller period of IGBT

Trade-off between switching loss and slew rate

Switching loss can be reduced

ITC-CSCC 2021

Control of Gate Voltage by Gate Current (Step3)

Step3

V_g : Miller voltage to threshold voltage

Trade-off between switching loss and overshoot

Overshoot can be reduced

ITC-CSCC 2021

Control of Gate Voltage by Gate Current (Step4)

Step4

V_g : Threshold voltage to 0

I_g : Uncontrollable due to I-V characteristics of MOSFETs

No effects on switching loss and overshoot

Comparison with Voltage Drive

Switching Loss : -35%, Overshoot : -32%

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation

 Current Gate Driver Circuit
 Simulation Results
- Gate Current Automatic Control
- Conclusion and Challenges

Gate Current Automatic Control

ITC-CSCC 2021 Comparison of Voltage Drive and Automatic Control Current Drive

Switching Loss : -31%, Overshoot : -31%

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation

 Current Gate Driver Circuit
 Simulation Results
- Gate Current Automatic Control
- Conclusion and Challenges

Conclusion and Challenges

Conclusion

- Proposal of current drive circuit to control gate voltage of IGBT
- During turn-off, when compared to conventional voltage drive :
- Current Drive \rightarrow switching loss (-35%), overshoot (-32%) Automatic Control \rightarrow switching loss (-31%), overshoot (-31%)

Challenges

 Automatic control of current value in each operating region