
Kobayashi Lab.

Gunma University

フラクタルを用いた
集積回路での小チップ面積での抵抗実現法

Resistor Implementation Algorithm with Small Chip Area based on Fractals

2021年度（第12回）電気学会東京支部
群馬支所・栃木支所 合同研究発表会
ETG-22-40, ETT-22-40

2022/03/02

Muhammad Hakib bin Hamid

ムハマド ハキブ ビンハミド

桑名杏奈 小林春夫

（群馬大学）

2/73

Outline

• Introduction

• Well-known fractal

-Sirpienski gasket

-Koch Curve

-Barnsley Fern

• Fractal Properties

• Program & Algorithm

• New Fractal

• Discussion

• Conclusion

3/73

Outline

• Introduction

• Well-known fractal

-Sirpienski gasket

-Koch Curve

-Barnsley Fern

• Fractal Properties

• Program & Algorithm

• New Fractal

• Discussion

• Conclusion

4/73

In Kobayashi Lab.

Applying Mathematics to Circuit Design

I applied Fractal to Resistor

5/73

Introduction

Resistor : 𝑟 = 𝜌
𝑙

𝑆
[Ω]

𝜌: Electrical resistivity [Ω⋅m]

𝑙: Length of object [m]

𝑆: Cross-sectional area[m2]

Current

𝑙
𝑆

Fractal:

Limited area,

Long line.

Fractal Resistor:

Limited area, large resistor

6/73

Outline

• Introduction

• Well-known fractal

-Sirpienski gasket

-Koch Curve

-Barnsley Fern

• Fractal Properties

• Program & Algorithm

• New Fractal

• Discussion

• Conclusion

7/73

Fractal

What is fractal?

A fractal is a never ending pattern that repeats itself

at different scales.

Fractals are extremely complex, sometimes

infinitely complex - meaning you can zoom in and

find the same shapes forever.

Fractals can also be used

by repeatedly calculating

a simple equation over and over.

画像出典：Wikipedia

8/73

Sierpinski gasket

Also known as Sierpinski Triangle

Purely geometric fractals can be made by

repeating a simple process.

The Sierpinski Triangle is made by repeatedly

removing the middle triangle from the prior

generation.

画像出典：Wikipedia

Iteration=0 Iteration=1 Iteration=2 Iteration=3 Iteration=4

9/73

Sierpinski gasket

The midpoints of the line segments of the

largest triangle is connected resulting

smaller triangles. This pattern is then

repeated for the smaller triangles, and

essentially has infinitely many possible

iterations.

10/73

Outline

• Introduction

• Well-known fractal

-Sirpienski gasket

-Koch Curve

-Barnsley Fern

• Fractal Properties

• Program & Algorithm

• New Fractal

• Discussion

• Conclusion

11/73

Koch curve

The Koch Curve is made by repeatedly replacing each segment

of a generator shape with a smaller copy of the generator.

At each step, the total length of the curve gets longer

approaching infinity. The length of the curve increases the more

closely you measure it.

Iteration=0

Iteration=1

Iteration=2

Iteration=3

Iteration=4

Iteration=5

12/73

Outline

• Introduction

• Well-known fractal

-Sirpienski gasket

-Koch Curve

-Barnsley Fern

• Fractal Properties

• Program & Algorithm

• New Fractal

• Discussion

• Conclusion

13/73

Barnsley fern

The Barnsley Fern is a fractal named after

the British mathematician Michael Barnsley.

14/73

Barnsley fern

The Barnsley fern shows how graphically beautiful

structures can be built from repetitive uses of mathematical

formulas.

The complexity of creating the Barnsley fern model,

together with the fact that the number of iterations required

could be tens of thousands, makes it extremely hard to plot

by hand.

While it is not impossible, it is much easier, and often

preferred, to use a computer instead.

15/73

Fractals in the real world

Fractals in the real world’ often break down when

examined closely enough

Fractal shapes exist throughout the human body, in

lungs, blood vessels, and neurons

In cosmology, fractal

distributions of galaxies have

been detected over relatively

small scales.

Other uses include antennae

design and image analysis

using multifractals.
画像出典：Wikipedia

16/73

Outline

• Introduction

• Well-known fractal

-Sirpienski gasket

-Koch Curve

-Barnsley Fern

• Fractal Properties

• Program & Algorithm

• New Fractal

• Discussion

• Conclusion

17/73

Koch Curve properties

LENGTH OF A SIDE (length)

If we begin with an equilateral triangle with side length 1, then the length of a side is

𝑆𝑛 =
𝑆𝑛−1
3

=
1

3𝑛

For iterations 0 to 3, length = 1, 1/3, 1/9 and 1/27.

NUMBER OF SIDES (n)

For each iteration, one side of the figure from the previous stage becomes four

sides in the following stage. Since we begin with three sides, the formula for the

number of sides in the Koch Curve is

𝑁𝑛 = 𝑁𝑛−1 ∙ 4 = 3 ∙ 4𝑛

For iterations 0, 1, 2 and 3, the number of sides are 3, 12, 48 and 192,

respectively.

Iteration=0 Iteration=1 Iteration=2 Iteration=3

18/73

Koch Curve properties

PERIMETER (p)

Since all the sides in every iteration of the Koch Curve is the same the perimeter

is simply the number of sides multiplied by the length of a side

𝑃𝑛 = 𝑁𝑛 ∙ 𝑆𝑛 = 3 ∙ 1 ∙
4

3

𝑛

for the first 4 iterations (0 to 3) the perimeter is 1,
4

3
,
16

9
,
64

27
.

Iteration=0 Iteration=1 Iteration=2 Iteration=3

19/73

Koch Curve properties

Area of the Koch Curve

In each iteration a new triangle is added on each side of the previous iteration, so

the number of new triangles added in iteration n is:

𝑇𝑛 = 𝑇𝑛−1 = 3 ∙ 4𝑛−1 =
3

4
∙ 4𝑛

The area of each new triangle added in an iteration is 1/9 of the area of each

triangle added in the previous iteration, so the area of each triangle added in

iteration n is:

𝑎𝑛 =
𝑎𝑛−1
9

=
𝑎0
9𝑛

Iteration=0 Iteration=1 Iteration=2 Iteration=3

20/73

Koch Curve properties

where a0 is the area of the original triangle. The total new area added in iteration

n is therefore:

𝑏𝑛 = 𝑇𝑛 ∙ 𝑎𝑛 =
3

4
∙
4

9

𝑛

∙ 𝑎0

The total area of the curve after n iterations is:

𝐴𝑛 = 𝑎0 +෍

𝑘=1

𝑛

𝑏𝑘 = 𝑎0 1 +
3

4
෍

𝑘=1

𝑛
4

9

𝑘

= 𝑎0 1 +
1

3
෍

𝑘=0

𝑛−1
4

9

𝑘

𝐴𝑛 = 𝑎0 1 +
3

5
1 −

4

9

𝑛

=
𝑎0
5

8 − 3
4

9

𝑛

If the length of one side of the first triangle s is 1, 𝐴0 = 𝑎0 =
3

4

𝐴0 =
3

4

Then, 𝐴𝑛 =
1

5

3

4
8 − 3

4

9

𝑛

For iterations 0, 1, 2 and 3, the number of sides are
3

4
,

3

3
,
10 3

27
and

94 3

243
,

respectively.

21/73

Koch Snowflake properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1

3

1

9

1

3𝑛

Number of Sides 𝑁𝑛 3 12 48 3 ∙ 4𝑛

Perimeter 𝑃𝑛 3 4 16

3
3 ∙ 1 ∙

4

3

𝑛

Number of New Triangles 𝑇𝑛 0 3 12 3

4
∙ 4𝑛

Area of Each New Triangle 𝑎𝑛
𝑎0 =

3

4

𝑎0
9

𝑎0
81

𝑎0
9𝑛

Total Area 𝐴𝑛 3

4

3

3

10 3

27

3

4
8 − 3

4

9

𝑛

𝑠=1

22/73

Outline

• Introduction

• Well-known fractal

-Sirpienski gasket

-Koch Curve

-Barnsley Fern

• Fractal Properties

• Program & Algorithm

• New Fractal

• Discussion

• Conclusion

23/73

Python Program

https://docs.python.org/ja/3/library/turtle.html

24/73

Algorithm (1)

from turtle import*
shape("arrow")
speed(0)
def snowflake_side(length, levels):

if levels == 0:
forward(length)
return

length /=3.0
snowflake_side(length, levels -1)
left(60)
snowflake_side(length, levels -1)
right(120)
snowflake_side(length, levels -1)
left(60)
snowflake_side(length, levels -1)

def create_snowflake(sides, length, iteration):
colors = ["green", "blue", "red", "purple", "maroon"]
for i in range(sides):

color(colors[i])
snowflake_side(length, iteration)
left(360 / sides)

create_snowflake(5, 200, 1)
mainloop()

left(60)

right(120)

left(60)

left(72)

25/73

Algorithm (2-1)

from turtle import*
shape("arrow")
speed(0)
def snowflake_side(length, levels):

if levels == 0:
forward(length)
return

length /=3.0
snowflake_side(length, levels -1)
left(60)
snowflake_side(length, levels -1)
right(120)
snowflake_side(length, levels -1)
left(60)
snowflake_side(length, levels -1)

def create_snowflake(sides, length, iteration):
colors = ["green", "blue", "red", "purple", "maroon"]
for i in range(sides):

color(colors[i])
snowflake_side(length, iteration)
left(360 / sides)

create_snowflake(5, 200, 1)
mainloop()

Recursion

再帰

26/73

Algorithm (2-2)

from turtle import*
shape("arrow")
speed(0)
def snowflake_side(length, levels):

if levels == 0:
forward(length)
return

length /=3.0
snowflake_side(length, levels -1)
left(60)
snowflake_side(length, levels -1)
right(120)
snowflake_side(length, levels -1)
left(60)
snowflake_side(length, levels -1)

def create_snowflake(sides, length, iteration):
colors = ["green", "blue", "red", "purple", "maroon"]
for i in range(sides):

color(colors[i])
snowflake_side(length, iteration)
left(360 / sides)

create_snowflake(5, 200, 2)
mainloop()

Recursion

再帰

27/73

Algorithm (2-3)

from turtle import*
shape("arrow")
speed(0)
def snowflake_side(length, levels):

if levels == 0:
forward(length)
return

length /=3.0
snowflake_side(length, levels -1)
left(60)
snowflake_side(length, levels -1)
right(120)
snowflake_side(length, levels -1)
left(60)
snowflake_side(length, levels -1)

def create_snowflake(sides, length, iteration):
colors = ["green", "blue", "red", "purple", "maroon"]
for i in range(sides):

color(colors[i])
snowflake_side(length, iteration)
left(360 / sides)

create_snowflake(5, 200, 3)
mainloop()

Recursion

再帰

28/73

Python Animation No.1

Iteration=5

Iteration=1 Iteration=2 Iteration=3

Iteration=4 Iteration=6

29/73

Outline

• Introduction

• Well-known fractal

-Sirpienski gasket

-Koch Curve

-Barnsley Fern

• Fractal Properties

• Program & Algorithm

• New Fractal

• Discussion

• Conclusion

30/73

Square Fractal properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1/3 1/9 1

3𝑛

Number of Sides 𝑁𝑛 4 20 100 4 ∙ 5𝑛

Perimeter 𝑃𝑛 4 20

3

100

9 4 ∙
5

3

𝑛

Number of New Squares 𝑇𝑛 0 4 20 4 ∙ 5𝑛−1

(when n≥ 1
)

Area of Each New Square 𝑎𝑛 𝑎0(= 1) 𝑎0
9

𝑎0
81

𝑎0
9𝑛

Total Area 𝐴𝑛 1 13

9

137

81 2 −
5

9

𝑛

31/73

Python Animation No.2

32/73

Reverse Triangle Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1s 1

3

1

9

1

3𝑛

Number of Sides 𝑁𝑛 3 12 48 3 ∙ 4𝑛

Perimeter 𝑃𝑛 3 4 16

3
3 ∙ 1 ∙

4

3

𝑛

Number of New Triangles 𝑇𝑛 0 3 12 3 ∙ 4𝑛−1

(when n≥ 1)

Area of Each New Triangle 𝑎𝑛 𝑎0(=
3

4
)

𝑎0
9

𝑎0
81

𝑎0
9𝑛

Total Area 𝐴𝑛 3

4

3

6

7 3

54
3

4

1

5
2 + 3

4

9

𝑛

33/73

Python Animation No.3

34/73

Reverse Square Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1

3

1

9

1

3𝑛

Number of Sides 𝑁𝑛 4 20 100 4 ∙ 5𝑛

Perimeter 𝑃𝑛 4 20

3

100

9 4 ∙
5

3

𝑛

Number of New Squares 𝑇𝑛 0 4 20 4∙ 5𝑛−1

(when n≥ 1)

Area of Each New Square 𝑎𝑛 𝑎0 = 1 𝑎0
9

𝑎0
81

𝑎0
9𝑛

Total Area 𝐴𝑛 1 5

9

25

81
5

9

𝑛

35/73

Python Animation No.4

36/73

Square-Half-Hexagon Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1/4 1/16 𝑠

4𝑛

Number of Sides 𝑁𝑛 4 20 100 4 ∙ 5𝑛

Perimeter 𝑃𝑛 4 5 25

4 4 ∙
5

4

𝑛

Number of New Half-

Hexagon 𝑇𝑛

0 4 20 4 ∙ 5 𝑛−1 when n≥
1

Area of Each New Half-

hexagon 𝑎𝑛

1 1

4

2

∙
3 3

4

1

16

2

∙
3 3

4

1

4𝑛

2

∙
3 3

4

Total Area 𝐴𝑛 1
1 +

3 3

16
1 +

63 3

256
1 +

3 3

55
1 −

5

16

𝑛

37/73

Python Animation No.5

38/73

Reverse Square-Half-Hexagon Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1/4 1/16 𝑠

4𝑛

Number of Sides 𝑁𝑛 4 20 100 4 ∙ 5𝑛

Perimeter 𝑃𝑛 4 5 25

4 4 ∙
5

4

𝑛

Number of New Half-

Hexagon 𝑇𝑛

0 4 20 4 ∙ 5 𝑛−1 when n≥
1

Area of Each New Half-

hexagon 𝑎𝑛

1 1

4

2

∙
3 3

4

1

16

2

∙
3 3

4

1

4𝑛

2

∙
3 3

4

Total Area 𝐴𝑛 1
1 −

3 3

16
1 −

63 3

256
1 −

3 3

55
1 −

5

16

𝑛

39/73

Python Animation No.6

40/73

Pentagon-Triangle Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1

3

1

9

1

3𝑛

Number of Sides 𝑁𝑛 5 20 80 5 ∙ 4𝑛

Perimeter 𝑃𝑛 5 20

3

80

9
5 ∙

4

3

𝑛

Number of New Triangles 𝑇𝑛 0 5 20 5 ∙ 4 𝑛−1

(n≥ 1)

Area of Each New Triangles

𝑎𝑛

5

8
10 + 2 5

1

9

1

81

1

9𝑛

(n≥ 1)

Total Area 𝐴𝑛 5

8
10 + 2 5

5

8
10 + 2 5

+
5

9

5

8
10 + 2 5

+
65

81

5

8
10 + 2 5

+ 1 −
4

9

𝑛

41/73

Python Animation No.7

42/73

Reverse Pentagon-Triangle Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1

3

1

9

1

3𝑛

Number of Sides 𝑁𝑛 5 20 80 5 ∙ 4𝑛

Perimeter 𝑃𝑛 5 20

3

80

9
5 ∙

4

3

𝑛

Number of New Triangles 𝑇𝑛 0 5 20 5 ∙ 4 𝑛−1

(n≥ 1)

Area of Each New Triangles

𝑎𝑛

5

8
10 + 2 5

1

9

1

81

1

9𝑛

(n≥ 1)

Total Area 𝐴𝑛 5

8
10 + 2 5

5

8
10 + 2 5

−
5

9

5

8
10 + 2 5

−
65

81

5

8
10 + 2 5

− 1 −
4

9

𝑛

43/73

Python Animation No.8

44/73

Square-Triangle Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1

3

1

9

1

3𝑛

Number of Sides 𝑁𝑛 4 16 64 4 ∙ 4𝑛

Perimeter 𝑃𝑛 4 16

3

64

9
4 ∙

4

3

𝑛

Number of New Triangles 𝑇𝑛 0 4 16 4 ∙ 4𝑛−1 (when n≥
1)

Area of Each New Triangles

𝑎𝑛

1 3

4
∙
1

9

3

4
∙
1

81

3

4
∙
1

9

𝑛

Total Area 𝐴𝑛 1
1 +

3

36
1 +

5 3

162
1 +

3

32
1 −

1

9

𝑛

45/73

Python Animation No.9

46/73

Reverse Square-Triangle Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1

3

1

9

1

3𝑛

Number of Sides 𝑁𝑛 4 16 64 4 ∙ 4𝑛

Perimeter 𝑃𝑛 4 16

3

64

9
4 ∙

4

3

𝑛

Number of New Triangles 𝑇𝑛 0 4 16 4 ∙ 4𝑛−1 (when n≥
1)

Area of Each New Triangles

𝑎𝑛

1 3

4
∙
1

9

3

4
∙
1

81

3

4
∙
1

9

𝑛

Total Area 𝐴𝑛 1
1 −

3

36
1 −

5 3

162
1 −

3

32
1 −

1

9

𝑛

47/73

Python Animation No.10

48/73

Hexagon-Triangle Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1

3

1

9

1

3𝑛

Number of Sides 𝑁𝑛 6 24 96 6 ∙ 4𝑛

Perimeter 𝑃𝑛 6 8 32

3
6 ∙

4

3

𝑛

Number of New Triangles 𝑇𝑛 0 6 24 6 ∙ 4𝑛−1 (when n≥
1)

Area of Each New Triangles

𝑎𝑛

3 3

2

3

4
∙
1

9

3

4
∙
1

81

3

4
∙
1

9

𝑛

Total Area 𝐴𝑛 3 3

2

55 3

36

124 3

81
3 3

2
+

3

32
1 −

1

9

𝑛

49/73

Python Animation No.11

50/73

Reverse Hexagon-Triangle Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛 1 1

3

1

9

1

3𝑛

Number of Sides 𝑁𝑛 6 24 96 6 ∙ 4𝑛

Perimeter 𝑃𝑛 6 8 32

3
6 ∙

4

3

𝑛

Number of New Triangles 𝑇𝑛 0 6 24 6 ∙ 4𝑛−1 (when n≥
1)

Area of Each New Triangles

𝑎𝑛

3 3

2

3

4
∙
1

9

3

4
∙
1

81

3

4
∙
1

9

𝑛

Total Area 𝐴𝑛 3 3

2

53 3

36

119 3

81
3 3

2
−

3

32
1 −

1

9

𝑛

51/73

Python Animation No.12

52/73

Python Animation No.13

53/73

Square-L-Shaped Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛

Number of Sides 𝑁𝑛

Perimeter 𝑃𝑛 4 12 36 4 ∙ 3𝑛

Number of New L-Shapes 𝑇𝑛 0 4 20 4 ∙ 5𝑛−1 (when n≥
1)

Area of Each New L-Shapes

𝑎𝑛

1

Total Area 𝐴𝑛 1 7

3

115

27 7 − 6
2

3

𝑛 2

Because of the complexity of the shape,

it cannot be formulated using the same procedure as other fractals.

When iteration is n, total area is an approximation.

54/73

Python Animation No.14

55/73

Reverse Square-L-Shaped Fractal Properties

Iteration 0 1 2 n

Length of a Side 𝑆𝑛

Number of Sides 𝑁𝑛

Perimeter 𝑃𝑛 4 12 36 4 ∙ 3𝑛

Number of New L-Shapes 𝑇𝑛 0 4 20 4 ∙ 5𝑛−1 (when n≥
1)

Area of Each New L-Shapes

𝑎𝑛

1

Total Area 𝐴𝑛 1 1 49

9 5 − 6
2

3

𝑛 2

Because of the complexity of the shape,

it cannot be formulated using the same procedure as other fractals.

When iteration is n, total area is an approximation.

56/73

Outline

• Introduction

• Well-known fractal

-Sirpienski gasket

-Koch Curve

-Barnsley Fern

• Fractal Properties

• Program & Algorithm

• New Fractal

• Discussion

• Conclusion

57/73

Discussion
Fractal: Limited area, Long line.

Fractal Resistor: Limited area, large resistor

No.1No.2

0

5

10

15

20

25

30

1 2 3 4 5 6

P
e
ri
m

e
te

r÷
T
o
ta

l A
re

a

Iteration

No.1
No.2
No.5
No.7
No.9
No.11
No.13

No.5 No.7No.9 No.11No.13

Fractals

Ranking of a long line with a limited area (at Iteration=6)

58/73

Discussion

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6

P
e
ri
m

e
te

r÷
T
o
ta

l A
re

a

Iteration

No.3
No.4
No.6
No.8
No.10
No.12
No.14

No.3No.4 No.6

Reverse FractalsFractal: Limited area, Long line.

Fractal Resistor: Limited area, large resistor When Iteration is 4, 5, 6

Perimeter÷Total Area is

108, 324, 972 respectivelly.

No.8No.10 No.12No.14

Ranking of a long line with a limited area (at Iteration=6)

59/73

Appendix (Overlapping Fractals)

• Python Animation of overlapping fractals that contain area

inside.

• Total area is the same as the original fractal

• For perimeter of original shape is P then perimeter of

overlapping image is
9

4
× 𝑃 (when 𝑖 = 𝑛)

• Python Animation No.1 as an example

• The total area is the same as the original Python

Animation No.1

• The perimeter although is different from the original

animation.

• The perimeter of the original No.1 is 4 ∙
5

3

𝑛
(when 𝑖 = 𝑛)

but the new perimeter for the overlapping fractals No.1 is
9

4
4 ∙

5

3

𝑛
(when 𝑖 = 𝑛) .

60/73

Python Animation (overlap) No.1

61/73

Python Animation (overlap) No.2

62/73

Python Animation (overlap) No.5

63/73

Python Animation (overlap) No.6

64/73

Python Animation (overlap) No.7

65/73

Python Animation (overlap) No.8

66/73

Python Animation (overlap) No.9

67/73

Python Animation (overlap) No.10

68/73

Python Animation (overlap) No.11

69/73

Python Animation (overlap) No.12

70/73

Outline

• Introduction

• Well-known fractal

-Sirpienski gasket

-Koch Curve

-Barnsley Fern

• Fractal Properties

• Program & Algorithm

• New Fractal

• Conclusion

71/73

Conclusion

• Implementing the resistor value based on fractal

concept during this development regarding this

theme.

• The gist concept of fractal providing a progress in

the electronic circuit output value when tempering

with resistor value aside from the finite areas

compiled within small chips.

• We tried a few more types of shapes of fractals

troubleshooting the small area circumstances

resulting in the addition of resistor value due to

large perimeter gain.

72/73

Future Works

Perimeter÷Total Area

Ranking of a long line with a limited area (at Iteration=6)
No.3No.4 No.14

When actually designing a resistor…

- Lines should not touch each other

- Limitation of processing accuracy

Are there any fractal-specific effects?

 Comparison with non-fractal shapes

Thank You for Listening

74/73

質疑応答

Q. たとえば以下のような図形は
小さな四角に囲まれた部分の面積の合計ではなく
全体の専有面積（赤枠部）を考えるべきではありませんか？

A. 今回は小さな四角に囲まれた部分の面積の合計しか計算していないので
今後、全体の専有面積や、使われず無駄になっている空間の有効利用も考えたいです。

No.4

