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Today in the realm of computer science and engineering, fractal geometry is a brand-new subject of study. It can be 

used in a variety of ways. Fractals in nature are so intricate and irregular that modeling them with traditional geometry 

objects is futile. The Fractal Geometry of Nature, by Benoit Mandelbrot, the father of fractal geometry, from his book 

published in 1982. This study examines numerous fractal topics, such as fractal dimension, various fractal generation 

techniques, their properties, and their applicability in real life. 
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1. Introduction

Throughout my research year in Kobayashi Lab from 

Gunma University which is a lab that focus mainly on 

electronic circuits we have discovered that using the 

concept of fractals to design better circuits in small chips. 

Hence the implementation of resistor within small chip 

area are brought into discussion. The general concept of 

fractal albeit a little complex to comprehend agrees that 

this is the next step forward in our research in addition a 

significant notice in the study of electronic circuit 

analysis. 

2. Fractal

A fractal is a form of infinitely complicated 

mathematical shape. In essence, a fractal is a pattern that 

repeats indefinitely, and every section of the Fractal, no 

matter how zoomed in or out, appears to be identical to 

the entire image. Fractals are used in a variety of fields, 

including economics, geography, medical imaging, and 

art. People believe that figures like as lines, circles, conic 

sections, polygons, spheres, and quadratic surfaces can be 

used to generate or explain natural objects. Natural 

objects that are irregular cannot be modeled using 

classical geometry. Gaston Julia, a French 

mathematician, studied the iteration process of a complex 

function extensively in 1918 and discovered the Julia set, 

which is a milestone in the field of fractal geometry. The 

Julia set is the dividing line between the prisoner and 

escape sets. The prisoner set is made up of points that are 

inside the Mendelbrot set, whereas the escape set is made 

up of points that are outside the orbit of the Mendelbrot 

set. The Julia set is the location where the complex 

function's chaotic behavior happens.

3. Well-known Fractal

Fractals can now be constructed as mathematical 

formulas rather than finite shapes, which has the 

advantage of allowing users to fully investigate the 

implications of Fractal equations. Examining the whole 

concept of fractals, we manage to conclude that although 

the area is finite but the perimeter of a fractal is infinite. 

Take the Koch Curve fractal for an example when 

investigating the properties of said fractal can be proven 

to be a good solution for the study of small chips. Due to 

the small area in small chips the amount of resistors we 

assume that small resistors can only fit the space 

provided in integrated circuits. Although this may be the 

case the small area is compensated by the infinite 

perimeter which can result in a greater resistor for each 

use. To put in details, figure 1 shows how a fractal have 

limited area but infinite perimeter. At each step, the total 

length of the curve gets longer approaching infinity. The 

length of the curve increases the more closely you 

measure it.  
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Fig.1. Koch Curve. 

First, let's consider the lengths of the edges in order as 

shown in Fig. 2. If we begin with an equilateral triangle 

with side length 1, then the length of a side is: 

�� � ����3 � 1
3�

For iterations 0 to 3, length = 1, �	 , �
 , �
��. 

For each iteration, one side of the figure from the 

previous stage becomes four sides in the following stage. 

Since we begin with three sides, the formula for the 

number of sides in the Koch Curve is: 

� � ��� ∙ 4 � 3 ∙ 4�
For iterations 0, 1, 2 and 3, the number of sides are 3, 

12, 48 and 192, respectively.  

Since all the sides in every iteration of the Koch Curve 

is the same the perimeter is simply the number of sides 

multiplied by the length of a side. 

�� � � ∙ �� � 3 ∙ �43�
�

for the first 4 iterations (0 to 3) the perimeter is 

1, �	 , ��
 , ����. 

Fig.2. The iterations for each creation of new and 

smaller triangles. 

Next, we will discuss about the area of Koch Curve 

using the equations and Fig. 3. In each iteration a new 

triangle is added on each side of the previous iteration, so 

the number of new triangles added in iteration � is: 

�� � ���� � 3 ∙ 4��� � 3
4 ∙ 4�

The area of each new triangle added in an iteration is 
�



of the area of each triangle added in the previous 

iteration, so the area of each triangle added in iteration � 

is: 

�� � ����9 � ��9� 

In each iteration a new triangle is added on each side of 

the previous iteration, so the number of new triangles 

added in iteration � is:  
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4 ∙ 4�

The area of each new triangle added in an iteration is �

  of the area of each triangle added in the previous 

iteration, so the area of each triangle added in iteration � 

is: 

�� � ����9 � ��9� 

where �� is the area of the original triangle. The total

new area added in iteration � is therefore: 
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The total area of the curve after � iterations is: 
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For iterations 0, 1, 2 and 3, the total areas are 
√	
� , 
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	 , 
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�� and 
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��	 , respectively. 

Fig. 3. Area of New Triangles. 

When iteration �  is set to infinity, the perimeter 

becomes infinite and the total area converges to 
�√	
# . 

Thus, the characteristic of a fractal is that the length of 

the sides can be infinite within a limited area. 

To highlight that exactly on how area works in fractals 

using computer animation is one of the way to clearly see 

the beauty behind fractals. Using turtle module based 

from Python Programming we have been able to create 

magnificent images of fractals.  



Fig. 4. Python Animation of Koch Curve. 

As shown in Fig. 4 a snowflake images are formed. The 

image is from the first iterations of triangles to the sixth 

iterations. With close observations at each iteration a lot 

more of smaller triangles are formed creating longer lines 

hence proving that with more iterations within the small 

area provided perimeter of the Koch Curve increases 

significantly. The final iteration looks the same as the 

previous iteration but only thicker in lines as the naked 

eyes can only process that much of information. Producing 

more iterations does not improve the shape itself because 

the lines are getting only thicker due to the huge amount 

of small shapes taking process compiled into the limited 

area. 

4. New fractal

Fig. 5. shows a few example of my testing the 

outcomes of fractal imaging for the third iteration for each 

shape. No. 1 is the Koch Curve introduced in the previous 

chapter. In the same way, we developed new fractals from 

No.2 to No.11. They are also named based on their shapes. 

When new shapes are generated facing inward, we gave 

it the name "reverse". 

Although some fractals have area inside them but 

another cases of fractals also exist where the inside of the 

shape developed smaller area until none can be seen by 

the observation of the human eye. 

(No.1) Triangle (No. 2) Square 

(No. 3) Reverse Triangle (No. 4) Reverse Square 

(No. 5) Square-Half-

Hexagon 

(No. 6) Reverse Square-

Half-Hexagon 

(No. 7) Pentagon-

Triangle 

(No. 8) Reverse Pentagon- 

Triangle 

(No. 9)Square-Triangle (No.10) Reverse Square-

Triangle 

(No.11)Hexagon-Triangle (No.12) Reverse Hexagon-

Triangle 



(No.13)Square-L-Shaped (No.14) Reverse Square-

L-Shaped

Fig. 5. Python Animetions of New Fractals. 

In the same way as in the previous chapter, We 

derived equations for the length and area of the 

perimeters of each fractal, and the length is devided by 

the area to compare the 14 fractals quantitatively. Since 

the shapes of No. 13 and No. 14 were too complicated, 

approximate values were used for the area when the 

iteration was more than two. Fig. 6. shows the result. We 

divided the results into reverse and non-reverse because 

there are a lot of fractals to compare once. The horizontal 

axis is the number of iterations. If the larger values, 

longer perimeters can be achieved with a limited area. 

The largest one is No.4, but this is due to its near-zero 

area, so it could be a problem when actually making the 

chip. 

5. Conclusion

Within our discovery we will be implementing the 

resistor value based on fractal concept during this 

development of our awareness regarding this theme. 

Comparing the previous triangled-shaped fractals that we 

have created with Python we were able to create plethora 

of choices of shapes to display areas within fractals that 

are crucial for space consuming theories. The theory 

provided within this particular research showed that 

based on the gist concept of fractal providing a progress 

in the electronic circuit output value when tempering 

with resistor value aside from the finite areas compiled 

within small chips. We tried a few more types of shapes of 

fractals troubleshooting the small area circumstances 

resulting in the addition of resistor value due to large 

perimeter gain.  
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(a) Fractals

(b) Reverse Fractals

Fig. 6. Perimeter divided by Total Area. 
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When Iteration is 4, 5, 6

Perimeter÷Total Area is

108, 324, 972 respectivelly.


