

#### Invited

### Recent Innovation of Waveform Acquisition Methods: Residue Sampling and Metallic Ratio Sampling

<u>Haruo Kobayashi</u>, Anna Kuwana, Shogo Katayama Shuhei Yamamoto, Yujie Zhao, Kentaroh Katoh, Yongliun Yan Koji Asami, Masahiro Ishida

> Gunma University Advantest Laboratories Advantest Corp.





Kobayashi Lab. Gunma University

### Self-Introduction

Haruo KOBAYASHI

Professor Gunma University, Japan



Analog/Mixed-Signal IC Design and Test

B.S. from U. Tokyo, Information PhysicsM.S. from U. Tokyo, Information PhysicsM.S. from UCLA, Electrical EngineeringPh.D. from Waseda U. Electrical Engineering

## OUTLINE

- Introduction
- Residue Sampling
- Metallic Ratio Sampling
- Conclusion

## OUTLINE

### • Introduction

- Metallic Ratio Sampling
- Residue Sampling
- Conclusion

### **Research Motivation**

Next Generation Communication System "5G"



### Sampling for Waveform Acquisition

6/46



Track/Hold Circuit



## Varieties of Sampling Technologies

#### Keywords:

Track/Hold Circuit Anti-Aliasing Filter Sampling Theorem Spectrum Folding Oversampling Equivalent-Time Sampling Coherent Sampling Frequency Conversion by Sampling Quadrature Sampling Sampling Clock Jitter Finite Aperture Time

New Concepts: Residue Sampling Metallic Ratio Sampling Based on Number Theorem

## OUTLINE

- Introduction
- <u>Residue Sampling</u>
- Metallic Ratio Sampling
- Conclusion
- Appendix

[1] S. Katayama, H. Kobayashi, et. al., "Application of Residue Sampling to RF/AMS Device Testing", 30th IEEE Asian Test Symposium (Nov. 2021)

[2] Y. Abe, H. Kobayashi, et. al., "Frequency Estimation Sampling Circuit Using Analog Hilbert Filter and Residue Number System", 13th IEEE International Conference on ASIC (Oct. 2019)

### **Research Goal**

Estimate high-frequency input signal with multiple low-frequency clock sampling circuits

High-frequency sampling circuit is difficult to realize

Our Approach :

Sampling high frequency signal with multiple low frequency clocks

Use Aliasing proactively

### **Chinese Remainder Theorem**

Chinese arithmetic book 'Sun Tzu calculation'

孫子算経

"When dividing by 3, its residue is 2, dividing by 5, its residue is 3, dividing by 7,its residue is 2. What is the original number ?"

Answer 23

10/46

Generalization

zation

**Chinese Remainder Theorem** 

Sun Tzu calculation



Sun Tzu

#### How to use Chinese remainder theorem

He quickly found out how many soldiers were.



#### How to use Chinese remainder theorem

He quickly found out how many soldiers were.



#### How to use Chinese remainder theorem

He quickly found out how many soldiers were.



### Example of Residue Number System

$$23 \% 3 = 2, \quad 23 \% 5 = 3, \quad 23 \% 7 = 2$$

- Natural numbers • 3, 5, 7 (relatively prime)  $N=3 \times 5 \times 7=105$
- k (0 <= k <= N-1 (=104))
- a : Remainder of k dividing by 3 a=mod3(k) b : Remainder of k dividing by 5 c : Remainder of k dividing by 7

b=mod5(k) c=mod7(k)

**k** (a, b, c)

one to one

Chinese remainder theorem

| а | b | С | k  |
|---|---|---|----|
| 0 | 0 | 1 | 15 |
| 1 | 1 | 2 | 16 |
| 2 | 2 | 3 | 17 |
| 0 | 3 | 4 | 18 |
| 1 | 4 | 5 | 19 |
| 2 | 0 | 6 | 20 |
| 0 | 1 | 0 | 21 |
| 1 | 2 | 1 | 22 |
| 2 | 3 | 2 | 23 |
| 0 | 4 | 3 | 24 |
| 1 | 0 | 4 | 25 |
| 2 | 1 | 5 | 26 |
| 0 | 2 | 6 | 27 |
| 1 | 3 | 0 | 28 |
| 2 | 4 | 1 | 29 |

Residue number system

### **Aliasing Phenomenon**



### Complex FFT of $j \times sin(2\pi f_{in}t)$



# Complex FFT of $\cos(2\pi f_{in}t) + j \times \sin(2\pi f_{in}t)^{17/46}$







[3] Y. Tamura, K. Asami, H. Kobayashi, et. al., "RC Polyphase Filter as Complex Analog Hilbert Filter", IEEE ICSICT (Oct. 2016)

### **RC** Polyphase Filter

 $I_{in} = \cos(\omega t)$ RC  $\mathbf{I}_{\text{out}} = A\cos(\omega t + \boldsymbol{\theta})$ Polyphase Filter  $Q_{out} = A \sin(\omega t + \theta)$  $\mathbf{Q_{in}} = \mathbf{0}$ lin+ lout+ R1 Rn Cn C1C1 Cn Qin+ Qout+ Ŕ1 ′Rn Cn C1  $M_{R1}$ ∕₩<sub>Rn</sub> linlout-C1 Cn Qin-Qout-R1

Passive analog bandstop filter

### **Proposed Sampling Circuit**



### **Simulation Setting**

#### **Complex FFT**

- Input frequency : 12 GHz
- Frequency resolution : 1 kHz
- Sampling frequency : 229 kHz, 233 kHz, 239 kHz (Relatively prime)
- Range of measurement : 0~2080622 kHz
  (Note: 229 × 233 × 239 = 2080623)

Measurement at 20 GHz using sampling frequencies of  $\Rightarrow$  200 kHz

### **Simulation Results**

#### **Complex FFT** : $cos(2\pi f_{in}t) + j \times sin(2\pi f_{in}t)$

- Input frequency : 12 GHz
- Frequency resolution : 1 kHz
- Sampling frequency : 229 kHz 233 kHz 239 kHz



### Frequency Estimation by Residue Number System<sup>23/46</sup>



Input frequency estimation using residue frequencies and residue number system

Estimate input frequency 12GHz

| a<br>[kHz] | b<br>[kHz] | c<br>[kHz] | k<br>[kHz] |  |  |  |  |
|------------|------------|------------|------------|--|--|--|--|
| 0          | 0          | 0          | 0          |  |  |  |  |
| 1          | 1          | 1          | 1          |  |  |  |  |
| 2          | 2          | 2          | 2          |  |  |  |  |
| ł          |            |            |            |  |  |  |  |
| 169        | 169        |            | 11999998   |  |  |  |  |
| 170        | .3         | 48         | 11999999   |  |  |  |  |
| 171        | 34         | 49         | 12000000   |  |  |  |  |
| 172        | 35         | 50         | 120()001   |  |  |  |  |
| 173        | 36         | 51         | 12′ J0002  |  |  |  |  |
|            | ł          | ł          | i          |  |  |  |  |
| 226        | 230        | 255        | 12752320   |  |  |  |  |
| 202        | 201        | 237        | 12752321   |  |  |  |  |
| 228        | 232        | 238        | 12752322   |  |  |  |  |

### **Simulation Result Overview**



### Two-Tone Test by Residue Sampling

Input:  $x(t) = \cos(2\pi f_1 t) + 0.5 \cos(2\pi f_2 t), f_1 = 70 \text{ MHz}, f_2 = 60 \text{ MHz}$ 

Output:  $y(t) = x(t) - 0.01 \frac{x(t)^3}{t}$ 



#### Two-Tone Test Simulation ( $f_{s1} = 17 \text{ MHz}$ )



| Theory                  |                | Simulation     |                        |                | Theory |              |                | Simulation     |                        |                |
|-------------------------|----------------|----------------|------------------------|----------------|--------|--------------|----------------|----------------|------------------------|----------------|
|                         | Freq.<br>[MHz] | Power<br>[dBc] | Residue freq.<br>[MHz] | Power<br>[dBc] |        |              | Freq.<br>[MHz] | Power<br>[dBc] | Residue freq.<br>[MHz] | Power<br>[dBc] |
| $f_1$                   | 70             | 0.00           | 2                      | 0.00           |        | $2f_1 - f_2$ | 80             | -48.4          | 12                     | -48.4          |
| $f_2$                   | 60             | -6.07          | 9                      | -6.07          |        | $2f_2 - f_1$ | 50             | -54.4          | 16                     | -54.4          |
| 3 <i>f</i> <sub>1</sub> | 210            | -51.9          | 6                      | -51.9          |        | $2f_1 + f_2$ | 200            | -48.4          | 13                     | -48.4          |
| 3 <i>f</i> <sub>2</sub> | 180            | -70.0          | 10                     | -70.0          |        | $2f_2 + f_1$ | 190            | -54.4          | 3                      | -54.4          |

#### Two-Tone Test Simulation ( $f_{s2} = 19 \text{ MHz}$ )



| Theory                  |                | Simulation     |                        |                | Theory |              |                | Simulation     |                        |                |
|-------------------------|----------------|----------------|------------------------|----------------|--------|--------------|----------------|----------------|------------------------|----------------|
|                         | Freq.<br>[MHz] | Power<br>[dBc] | Residue freq.<br>[MHz] | Power<br>[dBc] |        |              | Freq.<br>[MHz] | Power<br>[dBc] | Residue freq.<br>[MHz] | Power<br>[dBc] |
| $f_1$                   | 70             | 0.00           | 13                     | 0.00           |        | $2f_1 - f_2$ | 80             | -48.4          | 4                      | -48.4          |
| $f_2$                   | 60             | -6.07          | 3                      | -6.07          |        | $2f_2 - f_1$ | 50             | -54.4          | 12                     | -54.4          |
| 3 <i>f</i> <sub>1</sub> | 210            | -51.9          | 1                      | -51.9          |        | $2f_1 + f_2$ | 200            | -48.4          | 10                     | -48.4          |
| 3 <i>f</i> <sub>2</sub> | 180            | -70.0          | 9                      | -70.0          |        | $2f_2 + f_1$ | 190            | -54.4          | 0                      | -54.4          |

#### Two-Tone Test Simulation ( $f_{s3} = 23 \text{ MHz}$ )





| Theory                  |                | Simulation     |                        |                | Theory |              |                | Simulation     |                        |                |
|-------------------------|----------------|----------------|------------------------|----------------|--------|--------------|----------------|----------------|------------------------|----------------|
|                         | Freq.<br>[MHz] | Power<br>[dBc] | Residue freq.<br>[MHz] | Power<br>[dBc] |        |              | Freq.<br>[MHz] | Power<br>[dBc] | Residue freq.<br>[MHz] | Power<br>[dBc] |
| $f_1$                   | 70             | 0.00           | 1                      | 0.00           |        | $2f_1 - f_2$ | 80             | -48.4          | 11                     | -48.4          |
| $f_2$                   | 60             | -6.07          | 14                     | -6.07          |        | $2f_2 - f_1$ | 50             | -54.4          | 4                      | -54.4          |
| $3f_1$                  | 210            | -51.9          | 3                      | -51.9          |        | $2f_1 + f_2$ | 200            | -48.4          | 16                     | -48.4          |
| 3 <i>f</i> <sub>2</sub> | 180            | -70.0          | 19                     | -70.0          |        | $2f_2 + f_1$ | 190            | -54.4          | 6                      | -54.4          |

#### Two-Tone Test Simulation ( $f_{s4} = 29 \text{ MHz}$ )



| Theory                  |                | Simulation     |                        | Theory         |              |                | Simulation     |                        |                |
|-------------------------|----------------|----------------|------------------------|----------------|--------------|----------------|----------------|------------------------|----------------|
|                         | Freq.<br>[MHz] | Power<br>[dBc] | Residue freq.<br>[MHz] | Power<br>[dBc] |              | Freq.<br>[MHz] | Power<br>[dBc] | Residue freq.<br>[MHz] | Power<br>[dBc] |
| $f_1$                   | 70             | 0.00           | 12                     | 0.00           | $2f_1 - f_2$ | 80             | -48.4          | 22                     | -48.4          |
| $f_2$                   | 60             | -6.07          | 2                      | -6.07          | $2f_2 - f_1$ | 50             | -54.4          | 21                     | -54.4          |
| $3f_1$                  | 210            | -51.9          | 7                      | -51.9          | $2f_1 + f_2$ | 200            | -48.4          | 26                     | -48.4          |
| 3 <i>f</i> <sub>2</sub> | 180            | -70.0          | 6                      | -70.0          | $2f_2 + f_1$ | 190            | -54.4          | 16                     | -54.4          |



Frequency [MHz]

| Theory                  |                | Simulation     |                        |                | Theory |              |                | Simulation     |                        |                |
|-------------------------|----------------|----------------|------------------------|----------------|--------|--------------|----------------|----------------|------------------------|----------------|
|                         | Freq.<br>[MHz] | Power<br>[dBc] | Residue freq.<br>[MHz] | Power<br>[dBc] |        |              | Freq.<br>[MHz] | Power<br>[dBc] | Residue freq.<br>[MHz] | Power<br>[dBc] |
| $f_1$                   | 70             | 0.00           | 8                      | 0.00           |        | $2f_1 - f_2$ | 80             | -48.4          | 18                     | -48.4          |
| $f_2$                   | 60             | -6.07          | 29                     | -6.07          |        | $2f_2 - f_1$ | 50             | -54.4          | 19                     | -54.4          |
| 3 <i>f</i> <sub>1</sub> | 210            | -51.9          | 24                     | -51.9          |        | $2f_1 + f_2$ | 200            | -48.4          | 14                     | -48.4          |
| 3 <i>f</i> <sub>2</sub> | 180            | -70.0          | 25                     | -70.0          |        | $2f_2 + f_1$ | 190            | -54.4          | 4                      | -54.4          |

Residue HD, IMD power are the same as theorical HD, IMD power Residue sampling is applicable to two-tone test

## Summary

- Proposed a method to estimate high-frequency signal using multiple low-frequency sampling circuits.
- Confirmed its operation by theory and simulation.
- Measurable range can be wide: proportional to multiplication of multiple sampling frequencies.
- Measurable frequency resolution can be fine: proportional to number of FFT points

#### **Possible Applications:**

- Two-tone signal device testing
- Bluetooth device testing

### OUTLINE

- Introduction
- Residue Sampling
- Metallic Ratio Sampling
- Conclusion

[1] S.Yamamoto, H. Kobayashi, et. al., "Metallic Ratio Equivalent-Time Sampling and Application to TDC Linearity Calibration" IEEE Trans. Device and Materials Reliability (Mar. 2022)

[2] Y. Sasaki, H. Kobayashi, et. al., "Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System", 27th IEEE Asian Test Symposium (Oct. 2018)

### **Research Objective**

**Objective:**For efficient IC testing,**high efficiency waveform acquisition**with equivalent-time sampling.



Sampling points: localized



Sampling points: distributed



### **Equivalent-Time Sampling**

- Technique for sampling repetitive waveform
- Used in sampling oscilloscope and ATE



# IC Testing and Equivalent-Time Sampling

• Input signal  $\rightarrow$  Controlled during IC testing Input signal period  $T_{SIG} \rightarrow$  Output signal period  $T_{SIG}$ 



### Waveform Missing Phenomena





### Waveform Missing Conditions

$$f_{CLK} \gg f_{sin} \qquad f_{CLK} \approx \frac{1}{\alpha} f_{sin} \left( \alpha = 1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \cdots, \frac{1}{6}, \cdots \right) \qquad f_{CLK} \approx f_{sin}$$





# Efficient Waveform Acquisition Condition



Sampling points: Distributed

One-period reconstruction time Short

### **Golden Ratio Sampling**



[2] Y. Sasaki, H. Kobayashi, et. al., "Highly Efficient Waveform Acquisition Condition in Equivalent-Time Sampling System", 27th IEEE Asian Test Symposium (Oct. 2018)

# Distance of Adjacent Sampling Points



Maximum distance / Minimum distance =  $\varphi$  or  $\varphi^2$ 

Sampling points : Not too close & Not too far

### **Metallic Ratio**



### **Metallic Ratio Sampling**



## Sampling Efficiency Definition

N : Number of divisions in period T E : Sampling efficiency P: Number of points  $\rightarrow$  All divisions have at east one point in them.  $E = \frac{1}{D}$ ← Number to identify segmented area (8) (1)(7)2 (3) (4) (5) (6) (1)1.00 Sampling points and order 8 Ρ 3 Ν 0.75 Difference between adjacent 0.50 6 sampling points <  $\frac{2T}{N}$ 5 0.25 Voltage[V] 0.00 Golden ratio sampling 8 divisions. -0.25 P = 8, N = 8, T = 1.0-0.502  $\therefore E = \frac{8}{8} = 1.0$ -0.75 -1.00Difference between adjacent 0.375 0.500 0.000 0.125 0.250 0.625 0.750 0.875 1.000 Period T[ms] sampling points  $\rightarrow$  < In case of golden ratio sampling 8 divisions.

# Sampling Efficiency by Metallic Ratios

44/46



Efficiency  $\rightarrow$  varies by metallic ratio

## Summary

- We have found highly efficient waveform acquisition conditions
  - Golden ratio sampling

 $f_{CLK} = \phi \times f_{sig}$ 

 $\phi$ : Metallic ratio (=1.618...)

- Metallic ratio sampling

 $f_{CLK} = M \times f_{sig}$  M : Metallic ratio

- Applicable to RF/analog IC testing Input signal, Sampling clock Controllable
- They have found some rules in the viewpoint of number theory

### Conclusion

- Waveform sampling is a key for RF/analog device testing.
- New sampling technology can be developed based on number theory
  - Residue Sampling
  - Metallic Ratio Sampling
- " Number theory is queen of mathematics." Carl Friedrich Gauss



Kobayashi Lab. Gunma University

### OUTLINE

#### <u>Appendix</u>

Proactive Use of Finite Aperture Time in Sampling Circuit for Sensor Interface

 [1] Y. Yan, H. Kobayashi, et. al., "Proactive Use of Finite Aperture Time in Sampling Circuit for Sensor Interface"
 5th International Conference on Technology and Social Science (Dec. 2021)

### **Research Background**



Clarification of proactive use of finite aperture time in sampling circuit

- Low-pass filter chip area reduction
- Low frequency signal quality improvement



# Low Pass Filtering Effect of Aperture Time 50/46



#### Explicit transfer function

$$\frac{V_C}{V_{in}} = \frac{sinc(\omega\tau_2)}{sinc(\omega\tau_2) + j\omega\tau_1}$$

Finite aperture time  $au_2$ 



Lowpass filter action

- Harmful for high frequency signal sampling
  - Good for low frequency signal sampling
    - Lowpass filter simplification



Here  $\tau_1 = RC$ .

• Finite aperture time in sampling circuit

Low frequency signal acquisition:

Proactive use for lowpass filtering

One more comment

Pedestal error: caused by charge injection and clock feedthrough.

Pedestal error reduction by long aperture time.

