Evaluation of Code Selective Histogram Algorithm for ADC Linearity Test

Yujie Zhao, K. Katoh, A. Kuwana, S. Katayama, D. limori Y. Ozawa, T. Nakatani, K. Hatayama, H. Kobayashi Division of Electronics and Informatics Gunma University

K. Sato, T. Ishida, T. Okamoto, T. Ichikawa *ROHM Semiconductor*

- Background and Objective
- ADC Test with Histogram Method
- Code Selective Histogram Method
- Evaluation of Code Selective Histogram Algorithm
- Conclusion

Background and Objective

- ADC Test with Histogram Method
- Code Selective Histogram Method
- Evaluation of Code Selective Histogram Algorithm
- Conclusion

High quality & low cost ADC test is required

Research Objective & Approach

SAR ADC linearity test long time

- low-speed sampling
- high-resolution
 - Test cost is proportional to test time

This Work

- Background and Objective
- ADC Test with Histogram Method
- Code Selective Histogram Method
- Evaluation of Code Selective Histogram Algorithm
- Conclusion

Conventional Linearity Testing 1

■ Histogram method (Ramp wave input)

- ADC output histograms for all bins are equal if ADC is perfectly linear
- Highly linear ramp signal generation is difficult (limitation up to 14-bit ADC)

Conventional Linearity Testing 2

Histogram method(Single sine wave input)

- Low distortion sine using an analog filter
- Number of samples is small around middle
 Many samples required

DNL & INL

- Important ADC testing items
 - DNL : Difference between actual step width and ideal value
 - INL : Deviation from ideal conversion line

$$INL(k) = \sum_{i=1}^{k} DNL(i)$$

DAC Inside ADC

Target SAR ADC under test \Rightarrow Binary-weighted DAC inside.

In 10-bit case, large DNL **>** At digital codes of 512, 256, 768, 128, 384, 640, 896, ...

- Background and Objective
- ADC Test with Histogram Method
- <u>Code Selective Histogram Method</u>
- Evaluation of Code Selective Histogram Algorithm
- Conclusion

[1] Yujie Zhao, et al.: "Revisit to Histogram Method for ADC Linearity Test: Examination of Input Signal and Ratio of Input and Sampling Frequencies", Journal of Electronic Testing: Theory and Applications, Springer (March 2022)

Multiple Sine Waves Combination^{12/26}

Smaller slope of input signal \rightarrow More samples in histogram

Input signal slope reduction at target amplitude positions by combining sine waves.

Result of Multiple Sine Waves

Number of samples around middle (digital output 512) Increased.

Result of Other Codes

Problem of Two-Tone Input Signal^{15/26}

- Background and Objective
- ADC Test with Histogram Method
- Code Selective Histogram Method
- Evaluation of Code Selective Histogram Algorithm
- Conclusion

Applicable Input Waveforms

Probability of existing between waveform voltages V_i and V_{i+1} is

$$p[i] = \frac{2(t_{i+1} - t_i)}{T}$$
$$p[i] = \frac{2(f^{-1}(V_{i+1}) - f^{-1}(V_i))}{T}$$

DNL&INL Calculation Method

	 i-1	i	i+1	
V	V_{i-1}	Vi	V_{i+1}	
DNL	DNL[i-1]	DNL[i]	DNL[i+1]	
Р	p[i-1]	p[i]	p[i+1]	

Cumulative distribution function

$$PI[i] = \sum_{k=0}^{i} p[k] = \frac{2}{T} f^{-1}(V_{i+1})$$

$$DNL \text{ of an n-bit ADC is}$$

$$DNL[i] = (2^{n}-2) \cdot \frac{f(\frac{T}{2}PI[i]) - f(\frac{T}{2}PI[i-1])}{f(\frac{T}{2}PI[2^{n}-2]) - f(\frac{T}{2}PI[0])}$$

$$INL[i] = \frac{V_{i+1} - V_{i}}{\Delta} - 1[LSB]$$

$$INL[i] = (2^{n}-2) \cdot \frac{f(\frac{T}{2}PI[i]) - f(\frac{T}{2}PI[0])}{f(\frac{T}{2}PI[2^{n}-2]) - f(\frac{T}{2}PI[0])}$$

$$i = 1, 2, ..., 2^{n} - 1$$

$$DNL[0] \text{ and } INL[0] \text{ set to } 0$$

1

Proposed Method and Ideal (Sine)^{19/26}

 $DNL_{ABS} = |DNL_{Propose} - DNL_{Ideal}|$

Absolute difference between DNLs calculated from the proposed method and the ideal histogram

ADC DNL Setting of Evaluation

20/26

10bit ideal ADC Resolution N=1024 Total number of samples M= 2^{16}

$$f_{11}(t) = \sin(t) - \frac{\sin(11t)}{25}$$

Compare proposed wave $f_{11}(t)$ and sine wave are used as test signals

Evaluation Result of Undistorted ADC^{21/26}

As expected, number of samples near 255,767 and 511 increased

Evaluation Result of Distorted ADC 22/26

Same as undistorted result, number of samples near 255,767 and 511 increased, DNL accuracy improved

DNL Accuracy of Distorted ADC

Output code	Added DNL	Number of Samples for Two-tone	Error for Two- tone	Number of Samples for Sine wave	Error for Sine wave	$\frac{E_{Sin} - E_{Two}}{ DNL_{Add} }$
255	-0.3	62	0.000475	32	0.020511	6.67%
511	0.5	114	0.006441	62	0.021264	2.96%
767	-0.3	62	0.012022	34	0.022598	3.52%

Error compared to added DNL, the result of two-tone waveform is more accurate

- Background and Objective
- ADC Test with Histogram Method
- Code Selective Histogram Method
- Evaluation of Code Selective Histogram Algorithm
- <u>Conclusion</u>

Conclusion

Sine wave histogram method Specific codes (like middle of output range) Number of samples : less Proposed method Specific codes Number of samples increase Improve testing accuracy

Using code selective method,

DNL accuracy of specific code is improved by about 2%~7%.

Next work

 Calculate DNL results of other waveforms (other specific codes) and compare with sine wave.
 Expand code range of evaluation, get variation near specific codes

Thanks for your attention.

Cost is more important than quality. But quality is the best way to reduce cost.

Prof. Gen'ichi Taguchi 1924-2012