ICICT 2022 February 21(Mon) – 24(Thu) London, United Kingdom

Zoom : Virtual Room D

Feb. 24, 2022 GMT 10:46am - 11:00am

Current-Driven IGBT Gate Driver Circuit Considering Four Operation Regions

Souma Yamamoto, Yudai Abe, Akio Iwabuchi, Jun-ichi Matsuda, Anna Kuwana, Haoyang Du, Takafumi Kamio, Takashi Hosono, Shogo Katayama, Haruo Kobayashi Gunma University Sanken Electric Co. Ltd

Kobayashi Lab. Gunma University

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Gate Current Automatic Control
 - Analog Value
 - Digital Value
- Conclusion and Challenges

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Gate Current Automatic Control
 - Analog Value
 - Digital Value
- Conclusion and Challenges

Research Background

IGBTs have advantages of both MOSFETs and bipolar transistors

Used in wide range of applications as power semiconductor devices

Development of IGBT and its driver circuit is important

IGBT and Driver Circuit

IGBT

(Insulated Gate Bipolar Transistor)

Disadvantage Large gate capacitance

itance 📫 Driv

Driver design is difficult

Objective

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Gate Current Automatic Control
 - Analog Value
 - Digital Value
- Conclusion and Challenges

Voltage-Driven IGBT Evaluation Circuit (1/2)[®]

Voltage-Driven IGBT Evaluation Circuit (2/2)

Overshoot and Switching Loss during Turn-off

International Congress & Excellence Award

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Gate Current Automatic Control
 - Analog Value
 - Digital Value
- Conclusion and Challenges

Current Gate Driver Circuit (1/2)^{12/28}

Current Gate Driver Circuit (2/2)^{13/28}

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Gate Current Automatic Control
 - Analog Value
 - Digital Value
- Conclusion and Challenges

IGBT Turn-off Characteristics

Control of Gate Voltage by Gate Current (Region I)

Region I

V_g : Saturation voltage to Miller voltage

No effects on switching loss and overshoot

Control of Gate Voltage by Gate Current 17/28 (Region II)

ICICT 2022 International Congress & Excellence Awards

Control of Gate Voltage by Gate Current (Region III)

Region III

V_g : Miller voltage to threshold voltage

Trade-off between switching loss and overshoot

Control of Gate Voltage by Gate Current (Region IV)

Region IV

 V_g : Threshold voltage to $\boldsymbol{0}$

I_g : Uncontrollable due to I-V characteristics of MOSFETs

No effects on switching loss and overshoot

Comparison with Voltage Drive

Switching Loss : -35%, Overshoot : -32%

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Gate Current Automatic Control
 - Analog Value
 - Digital Value
- Conclusion and Challenges

Addition of an active differentiator with an operational amplifier

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Gate Current Automatic Control
 - Analog Value
 - Digital Value
- Conclusion and Challenges

Automatic Discrimination of Operation Regions (Digital value)

Digital Value \Rightarrow **Operation Regions**^{25/28}

- Research Background and Objective
- IGBT Evaluation Circuit
- IGBT Current Drive Simulation
 - Current Gate Driver Circuit
 - Simulation Results
- Gate Current Automatic Control
 - Analog Value
 - Digital Value
- Conclusion and Challenges

Conclusion and Challenges

Conclusion

- Proposal of current drive circuit to control gate voltage of IGBT
- During turn-off, when compared to conventional voltage drive : Current Drive → switching loss (-35%), overshoot (-32%)
- Automatic discrimination of the operating region of current-driven IGBT gate driver circuits.

Challenges

 To verify the effect of detection delay in the operating region change on switching loss and overshoot.

Kobayashi Laboratory

Thank you very much

