A Reference Current Source with Cascaded Nagata Current Mirrors Insensitive to Supply Voltage and Temperature

<u>Tianrui Feng</u>, Hiroshi Tanimoto, Takafumi Kamio, Souma Yamamoto, Takashi Hosono, Shogo Katayama

Kakeru Ootomo, Anna Kuwana, Haruo Kobayashi

Gunma University

Kitami Institute of Technology

Kobayashi Lab. Gunma University

- Research Background
- CMOS Reference Current Source
 with Cascaded Nagata Current Mirrors
- Temperature Insensitivity Design
- Conclusion

Research Background

- CMOS Reference Current Source
 with Cascaded Nagata Current Mirrors
- Temperature Insensitivity Design
- Conclusion

Bandgap Reference Source

Ratio of emitter areas of bipolar transistors Q1 and Q2 is N:1 Aspect ratios of MOSFET P1,P2,P3 are the same

Operation amplifier makes $V_A = V_B$

$$\Delta V_{BE} = V_{BE2} - V_{BE1}$$
$$= V_T \ln \frac{I_0}{I_{S2}} - V_T \ln \frac{I_0}{NI_{S1}}$$
$$= V_T \ln N$$

$$I_3 = \frac{V_{BE2}}{R_1} + \frac{V_T lnN}{R_0}$$

 V_{BE2} negative temperature coefficient V_T positive temperature coefficient I_3 insensitive to temperature

Development of reference current source insensitive to temperature and supply voltage with simple CMOS circuit.

Bandgap reference circuit

Complicated Large chip area

Nagata current source

Simple Insensitive to supply voltage

- Research Background
- CMOS Reference Current Source
 with Cascaded Nagata Current Mirrors
- Temperature Insensitivity Design
- Conclusion

Nagata Current Mirror

Peak current value *I*_{OUT,peak}

 $V_{GS1} = V_{GS2} + I_{IN}R$

$$(1) V_{GS1} = \sqrt{\frac{I_{IN}}{K_1}} + V_{th} \quad (K_1 = \frac{1}{2} \mu_n C_{ox} \frac{W_1}{L_1})$$

$$(2) V_{GS2} = \sqrt{\frac{I_{OUT}}{K_2}} + V_{th} \quad (K_2 = \frac{1}{2} \mu_n C_{ox} \frac{W_2}{L_2})$$

$$I_{OUT} = K_2 R^2 \left(\sqrt{\frac{I_{IN}}{K_1 R^2}} - I_{IN} \right)^2$$

NMOS Nagata current mirror

To find the maximal value, differentiate I_{OUT} with respect to I_{IN}

$$\frac{dI_{OUT}}{dI_{IN}} = 2K_2R^2 \left(\sqrt{\frac{I_{IN}}{K_1R^2}} - I_{IN} \right) \left(\sqrt{\frac{1}{K_1R^2}} \times \sqrt{\frac{1}{4I_{IN}}} - 1 \right)$$
$$I_{IN,peak} = \frac{1}{4K_1R^2} \quad , \quad I_{OUT,peak} = \frac{1}{16K_1R^2} \times \frac{K_2}{K_1}$$
Output current $I_{OUT} \rightarrow$ function of R, K_1, K_2

Consideration of Cascaded Current Source

Cascaded Reference Current Source

Simulation Result of Supply Voltage Variation

Output current becomes insensitive to supply voltage

- Research Background
- CMOS Reference Current Source
 with Cascaded Nagata Current Mirrors
- Temperature Insensitivity Design
- Conclusion

Temperature Characteristics of MOSFET Drain Current

In saturation region

$$I_D = \frac{W}{2L} \mu C_{ox} (V_{GS} - V_{th})^2$$

$$\frac{1}{I_D}\frac{dI_D}{dT} = \frac{1}{\mu}\frac{d\mu(T)}{dT} - \left[\frac{2}{V_{GS} - V_{th}(T)}\right]\frac{dV_{th}(T)}{dT}$$

Drain current is constant at a certain biasing voltage (V_{CP})

Temperature Characteristics of MOSFET Drain Current

As channel length L decreases, V_{CP} increases due to the short channel effect that makes V_{th} decrease.

Volatge(mV)

Temperature Characteristics of MOSFET Drain Current

$$\frac{1}{I_D} \frac{dI_D}{dT} = \frac{1}{\mu} \frac{d\mu(T)}{dT} - \left[\frac{2}{V_{GS} - V_{th}(T)}\right] \frac{dV_{th}(T)}{dT}$$

Volatge(mV)

In a large channel width, V_{th} is almost constant even width changes, hence the V_{CP} is almost constant.

Gate-Source Voltage of MN4

Constant V_{GS} of MN4 by cascade structure Biasing MN4 at ZTC point(V_{CP})

Simulation Result of Temperature Variation

Output current is almost constant with temperature variation

Simulation Result of Temperature Variation in 5 Corners

Output current in each corner is almost constant for temperature change

19/24

Parameters of MOSFETs and resistors

(W/L): Aspect ratio of MOSFETs W,L(μm)

20/24

Comparison with other designs

	Work	[1]	[2]	[3]	[4]	[5]
Technology	180nm	500nm	180nm	350nm	180nm	180nm
Supply Voltage(V)	1.5~3.3	1.8	2.4~3.0	1.8~3.0	1.25~1.8	1.8
Reference Current	4μΑ	7.25µA	10μΑ	96nA	92.3nA	120µA
Temp Co.(ppm/°C)	180	0.7	130	520	177	200
Temp Range (°C)	-40~95	-20~150	-40~80	0~80	-40~85	20~60
Power(µW)	75(@1.8V)	162	60 (@3.0V)	1 (@1.8V)	0.67 (@1.8V)	216

- [1] Y. Lu, et. al., "A 1.8-V 0.7 ppm/°C High Order Temperature Compensated CMOS Current Reference", Journal of Analog Integrated Circuits and Signal Processing (Jun. 2007).
- [2] C. Wu, et. al., "A Low TC, Supply Independent, and Process Compensated Current Reference", IEEE Custom Integrated Circuits Conference, San Jose (Sept 2015).
- [3] K. Ueno, et. al.,"A 1-μW, 600-ppm/°C Current Reference Circuit Consisting of Subthreshold CMOS Circuits," IEEE Trans. Circuits and Systems II: Express Briefs (Sept. 2010).
- [4] S. S. Chouhan, et. al., "A 0.67μW, 177 ppm/°C All MOS Current Reference Circuit in 0.18μm CMOS Technology," IEEE Trans. Circuits and Systems II: Express Briefs (Aug. 2016).
- [5] T. Abe, et.al., "A Simple Current Reference with Low Sensitivity to Supply Voltage and Temperature," 24th International Conference on Mixed Design of Integrated Circuits and Systems (Aug. 2017).

- Research Background
- CMOS Reference Current Source
 with Cascaded Nagata Current Mirrors
- Temperature Insensitivity Design
- Conclusion

- 1. Nagata Current Mirror
 - a) I-O current characteristics of Nagata current mirror
 - b) Peak value of output current and corresponding input current
- 2. Current Sources in Cascade Structure
 - a) Output peak value widened by cascade structure
 - b) Temperature independency realized by ZTC biasing technique
 - c) Output reference current insensitive to supply voltage and temperature
 - d) Working well without startup circuit

2022 IEEE 16th International Conference on Solid-State and Integrated Circuit Technology Oct.26, 2022

Thank you for your listening

Widely used Nagata current mirror wonderful

Kobayashi Lab. Gunma University