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Research Motivation (1)

Next Generation Communication System “5G”

$

High frequencies
In communication systems

\ 4

Electronic components
for high frequency bands

‘ Communication speed Higher than 10Gbps

Their testing technology
“High frequency waveform
sampling”
should be developed

1980 1990 2000 2010 2020
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Research Motivation (2)

loT systems prevalil

A lot of sensors Proactive use of
low frequency signals » finite aperture time
In sampling circuit

Analog interface circuit
low power, miniature size

Sensor

3 A& @

Sonar Pressure Geomagnetic  Soil

S

Accelerator Humidity Temperature  Sounds

(N 1 / @
g :ﬁ: Analog interface circuit

Gyro Flow llluminance  Image

P




Varieties of Sampling Technologies

Sampling Circuit

Anti-Aliasing Filter

Sampling Theorem

Subsampling

Spectrum Folding

Oversampling

Equivalent-Time Sampling
Metallic Ratio Sampling

Residue Sampling

Coherent Sampling

Frequency Conversion by Sampling
Quadrature Sampling
Non-uniform Sampling

Sampling Clock Jitter, phase jitter
Timing skew

Finite Aperture Time

+ Voltage

— Wavelorm

® Sampled Point

0

Ts 2Is 3Ts 4Is 5Is 6ls
time

71s 8l1s

7149
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Sampling for Waveform Acquisition

— Waveform

Voltage

@ Sampling Points

0 Ts 21s 31s 41s 5ls 61s 7Is 8is time

Track/Hold Circuit

® SW:ON
Vout(t) = Vin(t) Vlno—w—_'_—c Vout %
Track mode TC

® SW: OFF
3]
o
Vout(t) = Vin(toeg)  Vin L—c Vout £
Hold mode C g

T tCI)FF tim:
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OUTLINE

* Equivalent-Time Sampling Time-Base

Sampling Oscilloscope
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Wideband Repetitive Signal

Ingeneral Ty # T, # T3 %= T, Non-periodic

I I I3 p

Signal
waveform

T //' B ——> Time

Same

Repetitive - Equivalent-time sampling is applicable.
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Sequential Sampling

Input signal: repetitive, need NOT periodic ® Used for measurement
Sampling clock: synchronous to trigger @ Effective _vaUiSition_
@® No pre-trigger function

Trigger

|

|

|

7

- |

-

|

|

|

|

|

—

4At

> Time

Sampling
after trigger by N At

No signal capture

before trigger .
Trigger At=T_delay

N=1, 2, 3,..



Random Sampling

Input signal: repetitive, need NOT periodic

Sampling clock: NOT synchronous to input

Trigger

Used for measurement
Not effective acquisition
Pre-trigger function

12/50

Asynchronous between input signal

and sampling clock \ !;gi} $

Pre-Trigger
function

Trigger

Measure Atq, At,, Ats, ...
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Coherent Sampling

Input signal: repetitive, periodic Used for LSI Testing

Sampling clock: synchronous to input T

| ADC . ;
Coherent sampling sampled 5 5
ADC test system output : : |
Analog Input Digital Output ' '
Hlgnal Vin Dout Logic
(Fenerator ADG Analyzer
‘ mampling Clock . .
Clk . .
Signal Fules Reconstructed .
Cenerator | poroyy | Cenerator waveform *

Eeference Clock
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OUTLINE

» Metallic Ratio Sampling
- AMS IC Testing Applications
- ADC Histogram Test Application
- TDC Linearity Self-Calibration Application
- Pseudo Random Signal Generation

AMS: Analog and Mixed-Signal

[1] S.Yamamoto, H. Kobayashi, et. al., "Metallic Ratio Equivalent-Time Sampling and Application
to TDC Linearity Calibration" IEEE Trans. Device and Materials Reliability (Mar. 2022)
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Research Objective

Objective: For efficient IC testing,
high efficiency waveform acquisition
with equivalent-time sampling.

Sampling points: localized Sampling points: distributed



|IC Testing and Equivalent-Time Sampling

* Input signal — Controlled during IC testing

Input signal period Tsic — Output signal period TsiG

Signal
Generator

‘ Input signal

Measured
waveform

Sampling
CLK >

Tcrk

Tested IC

Measured signal
—

Tsic

)\

Sampling
Circuit

‘ Tcrk

16/49
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Waveform Missing Phenomena

Tsic
 (EEEEEE—) |

Waveform under test

Sampling CLK

<>

Tcrk

Caused by relationship
between TcLK and TsIG

[ A lot of data — reconstruct one period

B Testtime : LONG @J
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Waveform Missing Conditions

W =

1 112 1
fCLK >> fsin fCLK ~ Efsin (“zli' §E> fCLK ~ fsin

el
\4
- -

g
\J
-

CLK*\ CLK LI CLK [ | .
I1/1024 I e ) 1 ™
ruyuuL s

n=0 n=0 n=0

Sampling points: Localized
m) One-period reconstruction time : Long @
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Efficient Waveform Acquisition Condition

Proper CLK

‘ CLK

Sampling points: distributed

\ ¢

High efficiency waveform acquisition

S I N

Sampling points: Distributed
=) One-period reconstruction time Short @
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Golden Ratio Sampling

fcik = @ X fsig
¢ : golden ratio (= 1.6180339887...)

=
i
o

v

Voltage[V]

L T T T
A

@)
—
A

A
y
-—

=

1/ 7 o] 0‘.2 D‘.4 Dlﬁ 0?8 ‘1 1‘2 1?4 1.'5 1‘8 2
P phase/2n[rad]

[ Sampling points =) Uniformly distributed ]

[2] Y. Sasaki, H. Kobayashi, et. al., "Highly Efficient Waveform Acquisition Condition
in Equivalent-Time Sampling System", 27th IEEE Asian Test Symposium (Oct. 2018)



Distance of Adjacent Sampling Points

Voltage[V]

8] o1 0.2 03 0.4 0sa 06 o7 _4 0o 1

phase/2mn[rad]

¢ : golden ratio ( = 1.6180339887... )

Maximum distance.”Minimum distance = ¢ or ¢?

= Sampling points : Not too close & Not too far

~N

21/49
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Metallic Ratio

Metallic ratio
2
:n+ n- + 4 (n=1,23-)
2
g
Difference from reciprocal
/M : Metallic number \ 1
M — — = Natural Number
n=1: Golden ratio( M =1.6180...) M
n=2: Silverratio (M =2.4142...) Continued fraction
M=n+ ! 1
n=3: Bronze ratio( M = 3.3027...) n+o—
Limit of adjacent term ratio

sz: 1:M / Fo=0,F; =1,Fpp = nFpq +F,
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Metallic Ratio Sampling

Fixed fcrgk  — Test ADC with various f ;g

fecik = M X fgg4

M : Metallic ratio

1 n=0
I T o
:/\l\ i
1 1
1
1 I 1 N
1 1 1 T
| | 1 =)
1 1 I S
i | i S
[ ] =~
1
ck | — I
1/
M M= 2414 .. phase/2n[rad]

In the case of silver ratio

Sampling points == Always distributed evenly in phase
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OUTLINE

» Metallic Ratio Sampling
- AMS IC Testing Applications
- ADC Histogram Test Application
- TDC Linearity Self-Calibration Application
- Pseudo Random Signal Generation

[3] Y. Zhao, H. Kobayashi, et al. "Revisit to Histogram Method for ADC Linearity Test: Examination of
Input Signal and Ratio of Input and Sampling Frequencies"”, Journal of Electronic Testing (Mar. 2022)
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ADC Test Using Histogram with Ramp Input

» Ramp wave

t

DUT

ADC

Number

of Samples
= DNL
. i b f i i Code INL
001010011100101110111

® ADC output histograms for all bins are equal

If ADC Is perfectly linear

25
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DNL & INL Calculation

Number s
of Samples =)
A DNL 2a_|
U I —
_F: s
 Output
. A . Code
1 | 1 1 1 >
001 010 011 100 101 110 111

® Important ADC testing items

DNL : Difference between
actual step width and ideal value

INL : Deviation from ideal conversion line

INL(K) = ZK:DN L(i)
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Histogram of Ramp Signal

Number of
Samples
hi({\i[) - fﬁ) _— ideal value
v
. ' l | | | : : : :
Tsig 2Tsig 3Tsig 4Tsig ' ' ' ' ' : ' L,
Output Code

Total number of samples: M
ADC resolution :N.

N-h(k)_l]

. M
[ldeal value h;(k) = N’k =1,23,...,N error e(k) = o




RMS Error Calculation

28/50

Total number of samples: M=65536

——golden ratio —sliver ratio bronze ratio
60

50

40 |
. ¥ o

20

RMS

10

\

“ [ | 1 [ |

o Wt | ! |

0 32 64 96 128 160 192 224 256

Root mean square error :> i 5 (e())?
between actual and ideal histograms RMS = |————

RMS error is finite
even for ideal ADC

Histogram is accurate
with bronze ratio sampling

fs: sampling freq.
fin: ramp input frequency

fs:fin=3.302: 1
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OUTLINE

» Metallic Ratio Sampling
- AMS IC Testing Applications
- ADC Histogram Test Application
- TDC Linearity Self-Calibration Application
- Pseudo Random Signal Generation

[1] S.Yamamoto, H. Kobayashi, et. al., "Metallic Ratio Equivalent-Time Sampling and Application
to TDC Linearity Calibration" IEEE Trans. Device and Materials Reliability (Mar. 2022)



Time to Digital Converter (TDC)

® time interval — Measurement — Digital value

Start

T

:' ':

Stop r

@® Key component of Time-
domain analog circuit

@ Higher resolution can be
obtained with scaled CMOS

Start =
- Stop —»

TDC PP Dout

Higher resolution with CMOS scaling

50

LSB [ps]

beG

1998

2000 2002 2004 2006 2008
Year

30/49




Time-to-Digital Converter (TDC)

Start

o

—P:

Stop T_

Timing chart

Start

Start 4[>—

- s - in 1
==
St
oP Dolv 011 D2l
Encoder
Dout
D0=1
D1=1
Encoder
D2=1 Thermometer code
D3=0 \ 4
D4=0 binary code

Stop T

31/49




Time-to-Digital Converter (TDC)

+AT1 +AT2 +AT3 +AT4_
Start AD——D;%%

Start

o

—P:

Stop T_

Timing chart

Start

in s 7 v
—> Q“ > Q“ —> Q“
St
oP Dolv 011 D2l
Encoder
Dout
D0=1
D1=1
Encoder
D2=1 Thermometer code
D3=0 \ 4
D4=0 binary code

Stop T
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TDC Linearity Self-Calibration with Histogram

x Cc <

T ﬁw—b—w—b—%
D Q- D Qp D Q- D Q= HD Q- D QM= ™D QF
Test mode —
M |7
U

i o o I

Encoder

Histogram Engine & Digital Error Correction

Dout

[4] S. Ito, H. Kobayashi, et al. “Stochastic TDC Architecture with Self-Calibration,”
IEEE Asia Pacific Conference on Circuits and Systems (Dec. 2010)



START

Test mode— [

STOP

Self-Calibration Mode

ﬂbftb >Th oDy
D DQI— j;Q_ :D Q|— _D Q|— :D QH o

Synchronized

4 x

<<

Encoder

Histogram Engine & Digital Error Correction

Dout

34/49
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Normal Operation Mode

START

x Cc <

>

v LV
Test mode — —DQ_LI;Q_ _El_ :E' :E" _E" 1 o

M
STOP U
X

Encoder

Digital Error Correction

|

Dout




36/49

Histogram for Ideal TDC

Self-Calibration Mode

2000

The two oscillators are
different from each other
and not synchronized

0
16 18 20 16 18 20 22 16 18 20 22
' Code

The histograms in all bins will be equal,
after collection of a sufficiently large number of data,
if the TDC has perfect linearity

# of “1” output
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Histogram for Delay Mismatches

TDC is non-linear

. buffer delay
Histogram

N

T+AT, T+AT, T+ AT, T+AT,

- L | L~ | L

D Q ™D Q =D Q

P D

. | : 1 1 :
\I’ ! ! 1 ! ! 1 e

TDC digital output
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Principle of Linearity Self-Calibration

A

|
® His/t\ogram : ® n .

Nonlinear TDC j|_> 4

_
. —_— |

—_— | INL calculation
|

TDC digital output [i/{} > T
N Histogram
Dout = f(T') | y
® / | @ Histogram of ideally

Linearized by inverse function | Linear TDC

>

> I TDC digital output




Effective Self-Calibration Condition

M
START —{y tH—>—1 ﬁf\y B\, IIB\’ I§>__|>_|>O_IWW f
D Q DQ—\—DQ— :E— o a}- {;1,— D af
Test mode — B B B NOT
[ [ Synchronized
M
—. W\

Self-Calibration Mode

Our new finding

-

_é]_

<<

<+

—H

_ﬂi

Encoder

1

fo
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f1: fo Metallic ratio # Accurate calibration with small number of data

[1] S. Yamamoto, H. Kobayashi, et. al., "Metallic Ratio Equivalent-Time Sampling and Application
to TDC Linearity Calibration" IEEE Trans. Device and Materials Reliability (Mar. 2022)
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OUTLINE

» Metallic Ratio Sampling
- AMS IC Testing Applications
- ADC Histogram Test Application
- TDC Linearity Self-Calibration Application
- Pseudo Random Signal Generation
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Pseudo Random Signal Generation

4 )
fcik = @ X fsig

¢ : Golden ratio ( = 1.6180339887 ... )

\ Y
- 1 - n=0
‘ — : |
clk | L1 . Our proposal:
1 | | A = Pseudo Random Signal
/o With Uniform Distribution

Sampling points disperse uniformly]

[7] R. Ohta, A. Kuwana, et al., "Pseudo Random Number Generation Algorithms with Fibonacci Sequence®,
31st International Workshop on Post-Binary ULSI Systems ( (May 2022)
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OUTLINE

* Introduction
* Equivalent-Time Sampling Time-Base
* Metallic Ratio Sampling
- AMS IC Testing Applications
- ADC Histogram Test Application
- TDC Linearity Self-Calibration Application
- Pseudo Random Signal Generation
* Proactive Use of Finite Aperture Time
» Conclusion

[5] Y. Yan, H. Kobayashi, et al., "Proactive Use of Finite Aperture Time in Sampling Circuit for Sensor Interface®,
5th International Conference on Technology and Social Science (Dec. 2021)
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OUTLINE

* Introduction
* Equivalent-Time Sampling Time Base
» Metallic Ratio Sampling
- AMS IC Testing Applications
- ADC Histogram Test Application
- TDC Linearity Self-Calibration Application
* Proactive Use of Finite Aperture Time
» Conclusion

[5] Y. Yan, H. Kobayashi, et al., "Proactive Use of Finite Aperture Time in Sampling Circuit for Sensor Interface®,
5th International Conference on Technology and Social Science (Dec. 2021)
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Finite Aperture Time

vine :SW: _L > Vout « SW: ON
C

Y
I *Vout(t) = Vin(t) %D [f\
l | Track mode > | P
time
Vin — Vout SW: OFF %s ’ |
——C Vout(t) = Vin(torr) S ;/
L Hold mode | ti;]e

Finite transition time from track to hold modes
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Analogy with Camera Shutter Speed

Camera: Finite Shutter Speed Sampling Circuit:
Finite Aperture Time

T S

Gunma University

. . High
@ Moving Object :
requency

ﬁ ] %] j-\- Acquired Signal

(dunma University

Low pass
filtered

Blurred
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Low Pass Filtering Effect of Aperture Time

R )
O_ — ‘rz -
w 1P )% N\
W@  CTVe
B T, : Aperture Time

Track Hold Circuit

Explicit transfer function

Ve sinc(wt,) Here T;= RC.

Vi,  sinc(wty) + jot,

Finite aperture time T2 » Lowpass filter action

@® Bad for high frequency signal sampling

® Good for low frequency signal sampling
» Lowpass filter simplification 7

v

[6] M. Arai, H. Kobayashi , et. al. “Finite Aperture Time Effects in Sampling Circuit,”
IEEE 11th International Conference on ASIC (Nov. 2015).
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Long Finite Aperture Time

Small pedestal error ke o lose
@® Small charge injection ' TN
VG\ turn off -
_i_l Vin Yout Vin m\_\-‘—
= — + Vin-aVa L Vin-2Vb

channel channel
Vﬂu t— Vin - ﬂl["’m:.-:t

charge -
Vin charge 7T Violtage drop by charge Voltage drop by charge
injection and dock feedthrough injection and clock feedthrough
- '::_- }
time time

@® Small clock feedthrough

CK_\_
P

IH
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Proactive Use of Finite Aperture Time

@® Finite aperture time in sampling circuit:
Integral time from hold start to switch opening end.
- High frequency signal acquisition:

m) Performance deterioration

- Low frequency signal acquisition: Used fO_r
» sensor interface

Proactive use for lowpass filtering analog circuit

Explicit transfer function

@® Pedestal error in sampling circuit

» Caused by charge injection and clock feedthrough.

@® Pedestal error reduction for long aperture time.
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OUTLINE

 Conclusion
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Conclusion

@ Varieties of waveform sampling related technologies
@® Equivalent-time sampling
- Three time-bases
- Metallic ratio sampling
- Application to ADC histogram test
- Application to TDC linearity self-calibration
- Application to pseudo random signal generation
@® Proactive use of finite aperture time
- Useful for sensor interface analog circuit
@® Sitill many challenges




