Conjecture on Spatial-Temporal Response Relationship for Spatially Shift-Variant Networks with Positive and Negative Resistors

<u>Kakeru Otomo</u>, M. Chiba, S. Katayama, K. Yoshihiro A. Kuwana, T. Oide, H. Kobayashi, H. Tanimoto

> Gunma University Kitami Institute of Technology

Kobayashi Lab. Gunma University

- Research Objective
- Research Background
- Active Resistive Network
 - Spatial Impulse Response
 - Temporal Dynamics
- Uniform Network Dynamics
- Non-Uniform Network Dynamics
- Conclusion

- Research Objective
- Research Background
- Active Resistive Network
 - Spatial Impulse Response
 - Temporal Dynamics
- Uniform Network Dynamics
- Non-Uniform Network Dynamics
- Conclusion

Our previous theorem:

Spatial and temporal stability conditions are equal

for uniform resistive network including negative resistors

This research:

Investigation of spatial and temporal dynamics

for non-uniform resistive network

- Research Objective
- <u>Research Background</u>
- Active Resistive Network
 - Spatial Impulse Response
 - Temporal Dynamics
- Uniform Network Dynamics
- Non-Uniform Network Dynamics
- Conclusion

R-2R resistive ladder DAC

Advantages

- High speed
- No need for decoder

Disadvantages

- Glitch
- Non-monotonicity

Asynchronous SAR ADC

Advantages

- High speed
- Low power
- Small circuit

[1] Z . Xu, X. Bai, D. Yao, A. Kuwana, H. Kobayashi,

"Revisit to Hopfield Network for Asynchronous SAR ADC and DAC",

IEEE 3rd International Conference on Circuits and Systems, Chengdu, China (Oct. 2021)

Resistive Network Circuit (3)

High-speed analog image processor

Injected currents at nodes: Input image

[2] C. A. Mead, Analog VLSI and Neural Systems, Addison Wesley, 1989

- Research Objective
- Research Background
- <u>Active Resistive Network</u>
 - Spatial Impulse Response
 - Temporal Dynamics
- Uniform Network Dynamics
- Non-Uniform Network Dynamics
- Conclusion

Active Resistive Network: Including positive and negative resistors

Resistive Network Circuit (4)

Injected currents at nodes: Input image

[3] H. Kobayashi, J. L. White, A. A. Abidi, "An Active Resistor Network for Gaussian Filtering of Images", IEEE Journal of Solid-State Circuits (May 1991)

- Research Objective
- Research Background
- <u>Active Resistive Network</u>
 - Spatial Impulse Response
 - Temporal Dynamics
- Uniform Network Dynamics
- Non-Uniform Network Dynamics
- Conclusion

[5] C. A. Mead, Analog VLSI and Neural Systems, Addison Wesley, 1989

Spatial Impulse Response (2)

High-speed analog image processor (Gaussian chip)

Flat-top spatial impulse response

[3] H. Kobayashi, J. L. White, A. A. Abidi, "An Active Resistor Network for Gaussian Filtering of Images", IEEE Journal of Solid-State Circuits (May 1991)

- Research Objective
- Research Background
- <u>Active Resistive Network</u>
 - Spatial Impulse Response
 - Temporal Dynamics
- Uniform Network Dynamics
- Non-Uniform Network Dynamics
- Conclusion

Temporal Dynamics with R, C

Capacitances are considered for temporal dynamics

Temporal Step Response

- Research Objective
- Research Background
- Active Resistive Network
 - Spatial Impulse Response
 - Temporal Dynamics
- <u>Uniform Network Dynamics</u>
- Non-Uniform Network Dynamics
- Conclusion

Uniform Resistor Network

Shift invariant
Spatial transfer function

18⁄35

Simulation Results: Spatial Temporal Stabilities

Temporally stable

Spatially stable

19⁄35

Simulation Results: Spatial Temporal Instabilities

Temporally unstable

Spatially unstable

For uniform network with positive and negative resistors, spatial and temporal stability conditions are equivalent.

[4] T. Matsumoto, H. Kobayashi, Y. Togawa,

"Spatial Versus Temporal Stability Issues in Image Processing Neuro Chips",

IEEE Trans. Neural Networks, (July 1992).

[5] H. Kobayashi, T. Matsumoto, J. Sanekata,

"Two-Dimensional Spatio-Temporal Dynamics of Analog Image Processing Neural Networks", IEEE Trans. Neural Networks (Oct. 1995).

How about non-uniform network ?

- Research Objective
- Research Background
- Active Resistive Network
 - Spatial Impulse Response
 - Temporal Dynamics
- Uniform Network Dynamics
- <u>Non-Uniform Network Dynamics</u>
- Conclusion

Non-Uniform Resistor Network

Shift variant

Spatial transfer function CANNOT be defined

23⁄35

Spatial Impulse Response of Non-Uniform Network

Temporal Dynamics of Non-Uniform Network

Step response at the center node.

Boundary Condition

 $R_0 = 2k\Omega, R_1 = 1k\Omega, C = 1pF$, Step /=0.01mA

 $R_{\rm T} = -2.006 {\rm k}\Omega$

Temporally stable

- Violently behaved spatial impulse response
- Temporally unstable

Close relationships between spatial and temporal dynamics

General Non-Uniform Network

- Modestly well behaved spatial impulse response
- Temporally stable

- Violently behaved spatial impulse response
- Temporally unstable

If there is a node where the input current is injected and its node voltage as the spatial impulse response is negative,

the network is temporally unstable

Spatial Impulse Response

Temporally unstable

Example 1: 1st nearest connection

 $R_{0a} = R_{0c} = -1k\Omega$, $R_{0b} = R_{0d} = 1k\Omega$, $R_1 = 1k\Omega$, $I = 10\mu A$.

29⁄35

Example 2 : 1st nearest connection

 $R_{0a} = R_{0c} = 1k\Omega, R_{0b} = R_{0d} = -1k\Omega, R_1 = 1k\Omega, I = 10\mu A.$

Example 3 : 2nd nearest connection

 $R_{0a} = R_{0c} = 2k\Omega$, $R_{0b} = R_{0d} = 1k\Omega$, $R_1 = 1k\Omega$, $R_{2a} = R_{2b} = -1k\Omega$, $I = 10\mu A$.

Example 4 : 2nd nearest connection

 $R_{0a} = 2k\Omega, R_{0b} = 0.5k\Omega, R_{0c} = -2k\Omega, R_1 = 1k\Omega, R_2 = -1k\Omega, I = 10\mu A.$

Example 5: 3rd nearest connection

$$\begin{split} R_{0a} &= 2k\Omega, R_{0b} = 3k\Omega, R_{0c} = -0.25k, R_1 = 1k\Omega, R_{3a} = -4k, \\ R_{3b} &= -3k, R_{3c} = -2k, R_{3d} = -1k\Omega, I = 10\mu A \end{split}$$

33⁄35

- Research Objective
- Research Background
- Active Resistive Network
 - Spatial Impulse Response
 - Temporal Dynamics
- Uniform Network Dynamics
- Non-Uniform Network Dynamics
- <u>Conclusion</u>

Conclusion

Circuit network theorem:

- Equivalence between spatial and temporal stabilities
- for uniform network with negative resistors

This research has shown in simulation for non-uniform network: if there is a node where the input current is injected and its node voltage as the spatial impulse response is negative,

Generalization

the network is temporally unstable