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This paper proposes to use Routh-Hurwitz stability criterion for analysis and design of the opamp stability, when its small 
equivalent circuit is derived; this can lead to explicit stability condition derivation for opamp circuit parameters. In the theoretical 
part, we describe the equivalence between Nyquist and Routh-Hurwitz stability criteria under some conditions, and we deduce 
the relationship that between parameters of Routh-Hurwitz stability criterion and phase margin of the operational amplifier. In the 
verification part, our statement is confirmed with LTspice simulations at transistor level opamp circuits. 
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1. Introduction 

We proposed to use the Routh-Hurwitz stability criterion for 
operational amplifier stability analysis and design, to obtain 
explicit stability conditions for operational amplifier circuit 
parameters(1)-(4); this has not been described in any operational 
design book/paper, to the best of our knowledge(5)-(13). In this paper, 
we demonstrate that the respective mathematical foundations of 
Nyquist and Routh-Hurwitz stability criteria are equivalent, and 
we deduce the relationship between Routh-Hurwitz stability 
criterion parameters with phase margin of the operational amplifier 
as theoretical support and perfection for the proposed method, and 
then, we verify our proposed method with some amplifier models. 
Our SPICE simulation results show good agreements with our 
theoretical analysis based on the proposed method. We emphasize 
that our proposed method using the Routh-Hurwitz stability 
criterion can derive explicit stability/phase-margin-improvement 
equations using small signal circuit parameters, and the operational 
amplifier designer can understand which parameter values should 
be increased or decreased to obtain stability and phase margin. 
Even though small parasitic components in the small circuit model 
are neglected, these equations would be helpful for the designer. 

In the control theory field, there are many criteria for judging 
the stability of the feedback system(13). For example, Nyquist 
stability criterion and Routh-Hurwitz (R-H) stability criterion are 
widely utilized. The Nyquist stability criterion is a graphical 
technique for determining the stability of a dynamical system, and 
the Bode plot and Nyquist plot which be well known and used are 
all application examples based on the principle of Nyquist stability 
criterion. In the electronic circuit design field, Bode plot for the 
open-loop frequency characteristic is the most frequently used by 
circuit designers(5)-(12), while Nyquist plot is occasionally used(14). 
However, strangely enough, according to our survey of the related 

texts about analog electronic circuits(1)-(9), the Routh-Hurwitz 
method(12)-(14) is rarely mentioned in analysis and design of the 
operational amplifier stability. It seems that even some mature 
analog designers are not familiar with the R-H stability criterion. 
On this account, we have made attempts to introduce the R-H 
stability criterion into electronic circuit design field and begin 
with used for judging stability of operational amplifier. 

This paper is an extended version of our conference papers(1)-(4), 
and organized as follows: Section 2 briefly introduces Nyquist 
stability criterion and Routh-Hurwitz stability criterion. Section 3 
presents detailed derivation process of the proposed criterion with 
application to the small signal models of the three selected 
amplifiers. Section 4 deduces respective mathematical foundations 
of these criteria, and their equivalency is demonstrated. In Section 5, 
we deduce the relationship that between Routh-Hurwitz stability 
criterion parameters with phase margin (PM). In Section 6, we 
select some amplifiers to verify our proposed method with 
theoretical analysis and SPICE simulations. Section 7 presents 
some discussions, and Section 8 provides conclusion. 

2. Nyquist and Routh-Hurwitz Stability Criteria 

Let us consider the stability of the linear feedback system in 
Fig.1, and its stability criteria may be classified into the following: 
(1) Nyquist stability criterion using open-loop frequency 

characteristics of ( )fA j . 
・Bode plots (gain and phase plots) of ( )fA j . 
・Nyquist plot of ( )fA j . 
・Nicholas plot of ( )fA j . 

(2) Routh-Hurwitz stability criterion based on the closed-loop 
transfer function ( ) (1 ( ))A s fA s , when it is represented as 

( ) ( )N s D s , where,  
1

1 1 0

1
1 1 0

( )

( )

m m
n m

n n
n n

N s b s b s b s b
D s s s s   







    

    




   ........................... (1) 

and m<n. 
2.1 Nyquist Plot    The Nyquist plot is a frequency 

response plot in Gaussian plane, widely used in automatic control 
and signal processing (Fig.2 (a))(14). The most common use of 
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Nyquist plot is for assessing the stability of a system with feedback.  
Necessary and sufficient condition for the closed-loop system 

stability is given as follows: 

when, 0  , N
2

P
   

Here, N is the number of Nyquist plot anti-clockwise encircle 
point (−1, j0), and P is the number of positive roots of the 
open-loop characteristic equation. 

2.2 Bode Plot    In electrical engineering and control theory, 
the Bode plots are graphs of the frequency responses (gain and 
phase) of the open-loop characteristics of the feedback system, and 
they can show gain margin and phase margin (Fig.2 (b)) required 
to maintain feedback system stability under variations in circuit 
characteristics(5)-(13). Circuit designers can routinely use the Bode 
plots to determine the bandwidth and frequency stability of the 
operational amplifier circuits. 

2.3 Routh-Hurwitz Stability Criterion    In the time 
domain analysis of the control system theory, the Routh–Hurwitz 
stability criterion is a mathematical test that is the necessary and 
sufficient condition for the stability of a linear time invariant 
control system(13). It uses the ideas above to determine whether a 
given polynomial has roots in the right half-plane. 

Suppose that characteristic equation of the closed-loop transfer 
function is as follows: 

1
1 1 0( ) 0n n

n nD s s s s   
        ....................... (2) 

Necessary and sufficient condition of the stability is that all real 
parts of the solutions of (2) are negative, which is equivalent to the 
following: 

0i   for 0,  1,  ... ,  i n , and all values of the first column 
parameters in Routh table (Table 1) are positive. 

In the first column of the Routh table, the number of times for 
the coefficient sign changes is equal to the number of the system 
characteristic equation solutions with the positive real part. 

3. Small Signal Model of Amplifier and Proposed 
Criterion 

This section shows several examples of operational amplifiers 
and applications of the proposed stability criterion to them. 

1 2,R R  are equivalent resistors, 1 2,C C  are equivalent 
capacitances, 1 2,m mG G  are transconductances, 1rC  is 
compensation capacitance. 
Example 1:  Two-pole operational amplifier with C compensation. 

Consider the two-pole amplifier in Fig.3 whose open-loop 
transfer function is given by: 

1
2

1 2

1
( )

1

b sG s K
a s a s



 

.  ................................................. (3) 

Here, 1
1

2

r

m

Cb
G

  , 1 2 1 2m mK G G R R  

 1 1 1 2 2 1 2 1 2 2 1

1
2 1 2 2 1 1

2

,

1

m r

r

a R C R C R R R G R C

Ca R R C C C
C

    

  
    

   

   .................. (4) 

Fig.1 (b), (c) show feedback amplifiers using the operational 
amplifier in Fig.3, and their closed-loop transfer function is 
obtained as follows: 

 
 

 
 

1

2
1 1 2

1
.

1 1

G s K b s
f G s f K a f Kb s a s




    
  ................... (5) 

Here 2

1 2

Rf
R R




 for Fig.1 (b) and 1f   for Fig.1 (c). 

 

 
(a) Block diagram of the feedback system 

 
(b) Circuit example 1 with 2 1 2/ ( )f R R R   

 
(c) Circuit example 2 with 1f   (voltage follower) 

Fig. 1.  Feedback system. 
 

 
(a) Nyquist plot of an open-loop system 

 
(b) Bode plots of the loop gain for stable system 

Fig. 2.  Nyquist plot and Bode plots. 
 

 

Table 1.  Routh table. 
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Application of proposed criterion 
Then we set a parameter θ as follows: 

1 1θ .a f Kb    ................................................................ (6) 

Using equations of (4), the parameter θ is obtained as follows 

   1 1 2 2 1 2 1 2 1 1 2 1+ .θ r m m rR C R C R R C G f G R R C       

 ....................................... (7) 
Based on the R-H stability criterion, we can obtain the following 

as the necessary and sufficient condition for the operational 
amplifier feedback circuit stability: 

θ 0 .  ............................................................................ (8) 

Note that the explicit stability condition in Eqs. (7), (8) cannot be 
found out in any analog circuit design book(6)-(13), to the best of our 
knowledge. We can see from Eqs. (7), (8) which parameter values 
should be increased or decreased to obtain the feedback stability. 
Example 2:  Two-pole operational amplifier with R, C 
compensation. 

1 2,R R  are equivalent resistors, 1 2,C C  are equivalent 
capacitances, 1 2,m mG G  are transconductances, 1rC  is 
compensation capacitance, rR  is compensation resistor. 

The closed-loop transfer function of the feedback amplifier 
using the operational amplifier in Fig.4 is given by  

 
 

 
 

1

2 3
1 1 2 3

1
.

1 1

G s K b s
f G s f K a f Kb s a s a s




     
  ......... (9) 

Here, 2
1 2

2

r
r r

m

Cb R C
G

 
   

 
, 

 
 

1 2 1 2 3 1 2 1 2 2

1 1 1 2 2 1 2 1 2 2 2

2 1 2 2 2 1 2 1 2 2

   

.

, ,

,
m m r r

r m r

r r r r

K G G R R a R R R C C C
a R C R C R R R R R G C

a R R C C C C C C R C

 

     

   

   ..... (10) 

Then we can obtain the parameter 1α  as follows: 

   
 

1 1 1 1 1 2 2 1 2 2

2 1 1 2 1 2 2

α +

.

r r

m m m m r r

a f Kb R C R C R R R C

G f G f G G R R R C

     

    

and the Routh table’s parameter 1  is given by 

   

 
 

 
   

1 1 2 3
1

2

1 1 2 2 1 2 2

2 1 1 2 1 2 2

1 2 1 2 2 1 2 1 2
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1
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r r r r

a f Kb a a f K
a
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G f G f G G R R R C

R R C C R C f G G R R
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
  



   

  




   

 

 ..................................... (12) 
The stability condition is as follows: 

1α 0 ,  1 0  .  .......................................................... (13) 

Again, the explicit stability condition in Eqs. (11), (12), (13) 
cannot be found out in any analog circuit design book(6)-(13), to the 
best of our knowledge, and we understand from Eqs. (11), (12), 
(13) which parameter values should be increased or decreased to 
obtain the feedback stability. 
Example 3:  Three-pole operational amplifier. 

1 2 3, ,R R R  are equivalent resistors, 1 2 3, ,C C C are equivalent 
capacitances, 1 2 3, ,m m mG G G  are transconductances, 3 4,r rC C  are 
compensation capacitances. 

The closed-loop transfer function of the feedback amplifier 
using the operational amplifier in Fig.5 is given by 

 
 

 
   

2
1 2

2 3
1 1 2 2 3

1
.

1 1

K b s b sG s
f G s f K a f Kb s a f Kb s a s

 


      
  

 ..................................... (14) 
Where, 1 2 3 1 2 3m m mK G G G R R R , 

3 4
1

2 3

r r

m m

C Cb
G G

 
   

 
,  3 4

2
2 3

r r

m m

C Cb
G G

 ,   

 
 

1 3 1 2 2 1 2

4 2 3 3 2 3 1 1 2 2 3 3 .

r m

r m

a C R R G R R

C R R G R R R C R C R C

  

     
  

  

2 3 2 1 2 3 3 1 2 3 3 1 2 1 2

4 3 1 2 3 1 2 3 1 1 2 3 2 3

3 4 2 3 1 2 3 1 2 2 3 1 3

1 2 1 2 2 3 2 3 1 3 1 3

( ( ) ( ))

( ( (

.

) ))
r m

r m

r r m m

a C G R R R C R R R C R R C C
C G R R R C R R R C R R C C

C C G G R R R R R R R R R

R R C C R R C C R R C C

    

    

    

  

  

 

 
(a) Transistor level circuit 

 
(b) Small-signal model 

Fig. 3.  Two-pole amplifier with inter-stage capacitance. 
  

 
(a) Transistor level circuit 

 

(b) Small-signal model 

Fig. 4.  Two-pole amplifier with compensation of Miller 
right-half-plane zero. 

 

 ...................(11)
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3 1 2 3 3 2 3 1 3 2 1 2 1 3

1 4 1 2 3 1 2 3

( ) ( )

( ) .
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C C C C C C C C
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


  

 ..................................... (15) 
Then we can obtain the parameter 2 : 

2 1 1

3 1 2 2 1 2

4 2 3 3 2 3 1 1 2 2 3 3

3 4
1 2 3 1 2 3

2 3

( ) 

( ) 

.

r m

r m

r r
m m m

m m

a f Kb
C R R G R R

C R R G R R R C R C R C

C Cf G G G R R R
G G

  
  
     

 
  

 

  

and the Routh table’s parameter 2 : 

    1 1 2 2 3
2

2 2

  1  
.

 

a f Kb a f Kb a f K
a f Kb


   




  .............. (17) 

The stability condition is as follows: 

2α 0 ,  2 0  .  .......................................................... (18) 

Again, the explicit stability condition in Eqs. (16), (17), (18) 
cannot be found out in any analog circuit design book(6)-(13), to the 
best of our knowledge.  

In this section, we select three circuit configurations as 
examples for deducing the explicit stability condition based on the 
proposed method. For other circuit configuration, the R-H method 
would can be applied in the condition that if we can derive its 
characteristic equation of the closed-loop transfer function as (2) 
and Routh table as Table 1. 

4. Equivalence at Mathematical Foundations 

This section shows the equivalency between the Nyquist stability 
criterion and the R-H stability criterion in some conditions.  
Example 1:  Select one amplifier whose open-loop transfer 
function is given by 

  2 3
1 2 31

KG s
a s a s a s


  

  ......................................... (19) 

Fig.1 (c) shows a feedback amplifier (voltage follower) using 
this operational amplifier, and the closed-loop transfer function is 
obtained as follows: 

   
  2 3

1 2 31 1

G s KH s
G s K a s a s a s

 
    

  ................ (20) 

Based on the R-H stability criterion, we can obtain the following 
as the necessary and sufficient condition for the operational 
amplifier feedback circuit stability: 

 2 1 3

2

1
0

a a a K
a

 
   .................................................... (21) 

Since a2 > 0 for stability, we can deduce the stability condition 
as following: 

 2 1 3 1a a a K   ........................................................... (22) 

In frequency domain, Eq. (19) is represented as: 

 
   

   

32
1 2 3

2 3
2 1 3

2 2 3 2
2 1 3

1 ( )

1

(1 ) ( )

KG j
a j a j a j

K a j a a

a a a


  

  

  


  

    
  

  ................... (23) 

According to the explanation of Nyquist plot introduced in 
Section 2.1, and based on the Nyquist plot sketch as shown in Fig.6 
(a), we can find out that if the open-loop system is stable (P = 0), 
the Nyquist plot must not encircle the plot (−1, j0), so the stability 
condition is given as following:   

 1G j      ........................................................... (24) 

 1 1G j    ................................................................. (25) 

Here, 1  is the frequency at point A in Fig.6. 
Also according to the explanation of Bode plot that has been 

introduced in Section 2.2, and based on the Bode plot sketch as 
shown in Fig.6 (b), we can find out that if the open-loop system is 
stable, the Bode plot should satisfy the following conditions: 

 1G j      ........................................................... (26) 

 1GM 0 20 0lg G j     ......................................... (27) 

By simple derivation, we can found out the stability condition that 
the respective based on Nyquist plot and Bode plot as shown in 

 

 
(a) Transistor level circuit 

 
(b) Small-signal model 

Fig. 5.  Three-pole amplifier with inter-stage capacitance. 
 

 

 
(a) Sketch of Nyquist plot 

 

(b) Sketch of Bode plot 

Fig. 6.  Sketch diagram of the open loop transfer function. 
 

......................(16)
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Eqs. (24), (25) and Eqs. (26), (27) is actually identical.  
Considering Eqs. (23), (24) and (26), we can obtain: 

2 1
1

3

a
a

    ....................................................................... (28) 

Hence, the gain value at point A is: 

 
2 2 3 2

2 1 1 1 3 1
1 2 2 3 2

2 1 1 1 3 1 1
2

3

(1 ) ( )  

(1 ) ( )
1

K a a a KG j
a a a aa

a

  


  
  

 
  


  

 ..................................... (29) 
Based on calculation of Eq. (29) and conditions of Eqs. (25) and 

(27), we can obtain the following inequality expression ultimately: 

1 2 3 3 3 1 2a a a Ka a a a    , in case 3 1 2 0a a a    

3 1 2 3 1 2 3a a a Ka a a a    , in case 3 1 2 0a a a    ......... (30) 

Obviously, inequality expressions of Eqs. (22) and (30) are 
equivalent under some conditions. So, we can say that mathematical 
foundations of Nyquist and R-H stability criteria are equivalent for 
G(s) in Eq. (19). 
Example 2:  Select one amplifier whose open-loop transfer 
function is given by 

   1
2

1 2

1

1

K b s
G s

a s a s



 

  ................................................... (31) 

Fig.1 (c) shows a feedback amplifier (voltage follower) using 
this operational amplifier, and its closed-loop transfer function can 
be obtained as follows: 

   
 

1
2

1 1 21 1 ( )

G s K Kb sH s
G s K a Kb s a s


 

    
  .............. (32) 

Based on the R-H stability criterion, we can also deduce the 
stability condition as following: 

1 0K  , 1 1 0a Kb  , 2 0a    ................................. (33) 

We can obtain the stability condition: 

1

1

aK
b

  , in case 1 0b    

1

1

aK
b

  , in case 1 0b    ............................................ (34)  

In frequency domain, Eq. (31) is represented as: 

    
   

   

1

2

1 2

2 2 3
2 1 1 1 1 2 1

2 2 2 2
2 1

1

1

1  

(1 )

K b j
G j

a j a j

K a b a jK b a a b
a a




 
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 




 

    


 

  

 ..................................... (35) 
According to the explanation of Nyquist plot that has been 

introduced in Section 2.1, and based on the Nyquist plot sketch as 
shown in Fig.6 (a), we can find out that if the open-loop system is 
stable (P = 0), the Nyquist plot must not encircle the plot (−1, j0). 
So the stability condition is given as follows: 

 2G j      .......................................................... (36) 

 2 1G j    ................................................................. (37) 

Here, 2  is the frequency at point A.  
Also according to the explanation of Bode plot that has been 

introduced in Section 2.2, and based on the Bode plot sketch as 
shown in Fig.6 (b), we can find out that if the open-loop system is 
stable, the Bode plot should satisfy the following conditions: 

 1G j      ........................................................... (38) 

 1GM 0 20 0lg G j     ......................................... (39) 

By simple derivation, we can found out the stability condition that 
the respective based on Nyquist plot and Bode plot as shown in 
Eqs. (36), (37) and (38), (39) is actually identical.  

Considering Eqs. (35), (36) and (38), we can obtain: 

2 1
2

2 1

1
1

a
a b


 

  
 

 ........................................................... (40) 

Hence, the gain value at point A is: 

   
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 
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2 2 1 1 2

2 2 2 2 2
2 2 1 2

1 1
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1 2 1
2

11 1 1
1 1

1 2 1

1

(1 )

K a b a
G j

a a

a aK b a
b a bK

aa a a b a
b a b

 


 
 


 

 
 
    
 

  .................. (41) 

Based on the calculation of Eq. (41) and conditions of Eqs. (37) 
and (39), we can obtain the following inequality expression 
ultimately: 

1 1

1 1

a aK
b b

   , in case 1 1 0a b    

1 1

1 1

a aK
b b
   , in case 1 1 0a b    .................................... (42) 

Clearly, inequality expressions of Eqs. (34) and (42) are 
equivalent under some conditions. So, we can say that mathematical 
foundations of Nyquist and R-H stability criteria are equivalent.  
Example 3:  Select one amplifier whose open-loop transfer 
function is given by 

   1
2 3

1 2 3

1

1

K b s
G s

a s a s a s



  

  ......................................... (43) 

Fig.1 (c) show a feedback amplifier (voltage follower) using 
this operational amplifier, and the closed-loop transfer function is 
obtained as follows: 

   
 

1
2 3

1 1 2 31 1 ( )

G s K Kb sH s
G s K a Kb s a s a s


 

     
  .... (44) 

Based on the R-H stability criterion, we also can deduce the 
stability condition as following: 

1 0K  ,  1 1 0a Kb  ,  2 0a  ,  3 0a  ,  

   
   2 1 3

2

1
0

a a Kb a K
a

  
 .  ................................. (45) 

We can obtain stability condition: 

3 1 2

2 3

a a aK
a b a





, in case 2 3 0a b a    
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3 1 2

2 3

a a aK
a b a





, in case 2 3 0a b a    .............................. (46) 

In frequency domain, equation (43) is represented as: 

    
     

   

1

2 3

1 2 3

2 2 4 3 3
2 1 1 3 1 2 1 1 3

2 2 3 2
2 1 3

1

1

1
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K b j
G j

a j a j a j

K a a b a b j b a b a a

a a a




  

      

  




  

        
  

  

 ..................................... (47) 
According to the explanation of Nyquist plot that has been 

introduced in Section 2.1, and based on the Nyquist plot sketch as 
shown in Fig.6 (a), we can find out that if the open-loop system is 
stable (P = 0), the Nyquist plot should not encircle the plot (−1, j0), 
so the stability condition is given as follows: 

 3G j      .......................................................... (48) 

 3 1G j    ................................................................. (49) 

Here, 3  is the frequency at point A. 
Also according to the explanation of Bode plot that has been 

introduced in Section 2.2, and based on the Bode plot sketch as 
shown in Fig.6 (b), we can find out that if the open-loop system is 
stable, the Bode plot should satisfy the following conditions: 

 1G j      ........................................................... (50) 

 1GM 0 20 0lg G j     ......................................... (51) 

By simple derivation, we can found out the stability condition that 
the respective based on Nyquist plot and Bode plot as shown in 
(48), (49) and (50), (51) is actually identical.  

Considering that (47), (48) and (50), we can obtain: 

2 1 1
3

3 2 1

a b
a a b

 



  ............................................................. (52) 

Hence, the gain value at point A is: 

   2 2 4
2 3 1 1 3 3 1 3 3 2 1

3 2 2 3 2
2 3 1 3 3 3 1 2

1

(1 ) ( )

K a a b a b a a bG j K
a a a a a a

  


  
   

 
   

  

 ..................................... (53) 
Based on calculation of (53) and conditions (49) and (51), we 

can obtain the following inequality expressions ultimately: 

3 1 2 3 1 2

2 3 3 2

a a a a a aK
a b a a a b
 

 
 

, in case  3 1 2 3 2( ) 0a a a a a b     

3 1 2 3 1 2

3 2 2 3

a a a a a aK
a a b a b a
 

 
 

, in case  3 1 2 3 2 ( ) 0a a a a a b     

 ..................................... (54) 
Clearly, inequality expressions (54) and (46) are equivalent under 

some conditions. So, we can say that mathematical foundations of 
Nyquist and R-H stability criteria are equivalent.  
Example 4:  Select one amplifier whose open-loop transfer 
function is given by 

   2
1 2

2 3
1 2 3

1

1

K b s b s
G s

a s a s a s
 


  

  ......................................... (55) 

Fig.1 (c) show a feedback amplifier (voltage follower) using 
this operational amplifier, and the closed-loop transfer function is 
obtained as follows: 

   
   

2
1 2

2 3
1 1 2 2 31 1 ( )

G s K Kb s Kb sH s
G s K a Kb s a Kb s a s

 
 

      
  

 ..................................... (56) 
Based on the R-H stability criterion, we also can deduce the 

stability condition as follows: 

    2 2 1 1 3 1 0a Kb a Kb a K       ........................... (57) 

Let set one function: 

      2 2 1 1 3

2
1 2 1 2 2 1 3 1 2 3

1f K a Kb a Kb a K

K b b Ka b Ka b Ka a a a

    

        ......... (58) 

● Domain of definition (0, )K    
● Initial value: 1 2 3(0)f a a a    ................................... (59) 
● Derived function: 
    1 2 1 2 2 1 3(K) 2f Kb b a b a b a      .......................... (60) 

For get to the stability condition (57), the following condition 
should be satisfied:  

   0 0, and K 0f f     ............................................. (61) 

Thus, the stability condition is becoming: 

1 2 1 2 2 1 32 0Kb b a b a b a      ......................................... (62) 

at condition: 1 2 3 0a a a  . 
In frequency domain, equation (55) is represented as:  

      
     

   
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2 2 4 2 4 3 3 5 3
2 2 2 2 1 1 3 1 3 1 1 2 3 2 1 2 1
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1

1
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a a a

 
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  

          
  

 


  

          


  

  

 ..................................... (63) 
According to the explanation of Nyquist plot that has been 

introduced in Section 2.1, and based on the Nyquist plot sketch as 
shown in Fig.6 (a), we can find out that if the open-loop system is 
stable (P = 0), the Nyquist plot must not encircle the plot (−1, j0), 
so the stability condition as following: 

 4G j      ........................................................... (64) 

 4 1G j    ................................................................. (65) 

Here, 4  is the frequency at point A. 
Also according to the explanation of Bode plot that has been 

introduced in Section 2.2, and based on the Bode plot sketch as 
shown in Fig.6 (b), we can find out that if the open-loop system is 
stable, the Bode plot should satisfy the following conditions: 

 1G j      ........................................................... (66) 

 1GM 0 20 0lg G j     ......................................... (67) 

By simple derivation, we can found out the stability condition that 
the respective based on Nyquist plot and Bode plot as shown in 
(64), (65) and (66), (67) is actually identical.  

Considering that (63), (64) and (66), we can obtain: 

3 3 5 3
3 4 1 4 1 2 4 3 2 4 1 4 2 1 4 0a a a b a b b a b           .  ........ (68) 

After transformation, we can obtain: 

  2 2
2 4 1 3 42

2 4
1

1
1

b a a
a

b
 


 

    .................................. (69) 

Hence, the gain value at point A is: 
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 
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It follows from (68) that we have 

4 2
3 2 4 2 1 1 2 3 4 1 1( ) 0a b a b a b a a b         .................... (71) 

Solution of Eq. (71) is given by 
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It follows from Eqs. (72), (70) and condition (57) that we have 

  1 1
4 2

1 3 4 3 1 2 2 1
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1 2 2 1 3
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1
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By calculation, we can obtain the following inequality expression 
ultimately: 

3 1 2 2 1 1 2 1 2 2 1 32a a b a b Kb b a b a b a        

  in case 1 2 2 1 3 0a b a b a     

1 2 2 1 3 1 2 3 1 2 2 12a b a b a Kb b a a b a b        

  in case 1 2 2 1 3 0a b a b a     ...................................... (74) 

Clearly, inequality expressions of Eqs. (62) and (74) are 
equivalent under some conditions. So, we can say that mathematical 
foundations of Nyquist and R-H stability criteria are equivalent.  

5. Relationship Between R-H Parameters and Phase 
Margin 

Example 1:  Consider the two-pole amplifier as shown in Fig.3. 
Accordingly, Fig.1 (b) shows a feedback amplifier using this 
operational amplifier, and its closed-loop transfer function is shown 
as Eq. (5). Based on the R-H stability criterion, we can obtain the 
explicit stability condition is shown as Eq. (8). 

We define the R-H parameter θ as one time dimension parameter. 
Using the parameter values of short-channel CMOS devices, and 
calculating the values of parameter θ and the corresponding 
operational amplifier system phase margin (PM), gain margin 
(GM), gmF  and pmF  at various feedback factor f  conditions, 
using MATLAB. gmF  is the frequency where the gain margin is 
measured, which is a 180   phase crossing frequency in Bode 
plot, and pmF  is the frequency where the phase margin is 
measured, which is the 0 dB gain crossing frequency in Bode plot. 
For example, when feedback factor 0.01f  , we can obtain the 
values as Table 2. 

Using the polyfit function of MATLAB, we can obtain the fitted 
curve which can indicate the relationship between parameter θ with 
phase margin as shown in Fig.7 under various feedback factor 
conditions. In feedback factor 0.01f   condition, we can obtain 
the fitted curve as shown in Fig.8, and the corresponding relation 
function is given as follows: 

28 5 23 4 18 3

13 2 28

2.601 5.616 4.683

1.915 4.076 13.38

PM e e e
e e
  

 

  

    .................. (75) 

As shown in Fig.7 and Fig.8, the PM and the R-H parameter θ 
have the linear relationship, following with the increase of 
parameter value θ, the phase margin will be increased; in other 
words, the feedback system will be more stable. 

We can calculate a required value of the compensation capacitor, 
for a given operational amplifier PM, based on the calculated 
value of the parameter θ. 
Example 2:  Consider the two-pole amplifier as shown in Fig.4, 
whose open-loop transfer function is given by  

   1
2 3

1 2 3

1

1

K b s
G s

a s a s a s



  

  ......................................... (76) 

Accordingly, Fig.1 (b) shows a feedback amplifier using this 
operational amplifier, and its closed-loop transfer function is 
shown as (9). Based on the R-H stability criterion, we can obtain 
the stability condition is shown as (13).  

We also define the R-H parameters 1 1,   as time dimension 
parameters. Using the parameter values of short-channel CMOS 

 ...........................................(70)

 ....................................................(72)

................................... (73)

 

Table 2.  Data collection. 

 
 

 
Fig. 7.  Relationship between PM and parameter θ in 
various feedback factor conditions. 

 

Fig. 8.  Relationship between PM and parameter θ in 
feedback factor 0.01f   condition. 

  

 
Fig. 9.  Relationship between PM with parameter 1 1,   
at feedback factor 0.01f   condition. 
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devices, and calculating the values of parameters 1 1,   and the 
corresponding feedback system’s PM, at variation feedback factor 
f conditions by MATLAB. At feedback factor 0.01f   condition, 
we can obtain the relation function in Fig.9, when parameters 

1 1,   as independent variables and PM as dependent variable by 
using interpolation function in curve fitting tool of MATLAB. 

As shown in Fig.9, the relationship between R-H parameter 

1 1,   with PM is linear one, and following with the increase of 
parameter’s value, the phase margin will be increased, in other 
words, the feedback system will be more stable. 

6. Verification with SIPCE Simulation 

We calculate the values of the parameters θ, 1 1,   as shown in 
Eqs. (7), (11), (12) and depict Bode plots using SPICE for judging 
stability of the amplifier with the voltage follower configuration 
(Fig.1 (c)) for amplifiers 1, 2. See Table 3, Figs. 10, 11, 12 as 

amplifier 1, Table 4, Figs. 13, 14, 15 as amplifier 2. 
Then we show analysis between their simulation results and 

the parameter values of  θ, 1  and 1 . We found out the 
following: when θ, 1  and 1  are greater than 0, less than 0 and 
approximated to 0, then the corresponding amplifier with the 
voltage follower configuration in Fig.1 (b) is stable, unstable and 
critical stable, respectively. 

We can distinctly find that the amplifier stability depends on the 
parameters θ, 1 , 1 , and the feedback system is stable if and 
only if the parameters θ, 1  and 1  are positive. 

Using the parameter values of short-channel CMOS devices, 
and calculating inequality Eqs. (8) and (13), we can obtain the 
value range of the compensation capacitor 1rC : 

1 79.57fFrC    .............................................................. (77) 

 

Table 3.  Parameter values of the amplifier 1. 

 
 

 
Fig. 10.  Bode plots for case (1) of unstable amplifier 1. 

 

 
Fig. 11.  Bode plot for case (6) of the critical stable 
amplifier 1. 

 

 

Fig. 12.  Bode plot for case (8) of the stable amplifier 1. 
 

 

Table 4.  Parameter values of the amplifier 2. 

 
 

 

Fig. 13.  Bode plot for case (3) of the unstable 
amplifier 2. 

 

 
Fig. 14.  Bode plot for case (5) of the critical stable 
amplifier 2. 

 

 
Fig. 15.  Bode plots for case (8) of the stable amplifier 2. 
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and obtain inequality expression: 
8 10

2 2

8
2
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Let,  
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2 23.5 10 3.7 10 831.7r r r rX C R C R        
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  



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  ........... (79) 

We select several values of the parameters in Eqs. (77), (78) and 
depict their Bode plots using SPICE (LTspice) simulator for judging 
stability of the amplifier with voltage follower configuration. See 
Table 5, Fig.16~Fig.21 as amplifier 3, Table 6, Fig.22~Fig.27 as 
amplifier 4. The frequency in these transient analysis simulations 
is 1×105 Hz. 

Consider the two-pole amplifier in Fig.28. Based on the 
 

Table 5.  Parameter values of the amplifier 3. 

 

 

 

Fig. 16.  Bode plot for case (1) of the stable amplifier 3. 
 

 
Fig. 17.  Bode plot for case (2) of the critical stable 
amplifier 3. 

 

 

Fig. 18.  Bode plot for case (3) of the unstable 
amplifier 3. 

 

 

 

Fig. 19.  Pulse response for case (1) of the stable 
amplifier 3. 

 

 

Fig. 20.  Pulse response for case (2) of the critical 
stable amplifier 3. 

 

 
Fig. 21.  Pulse response for case (1) of the unstable 
amplifier 3. 

 

 

Table 6.  Parameter values of the amplifier 4. 

 
 

 
Fig. 22.  Bode plot for case (1) of the stable amplifier 4. 

 

 

Fig. 23.  Bode plot for case (2) of the stable amplifier 4. 
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principle and processing described in Section 5, we obtain the 
parameter θ as shown in Eq. (7). We can calculate a required value 
of the compensation capacitor, for a given operational amplifier 
PM, based on the calculated value of the parameter θ. Using the 
polyfit function, we can obtain the curves which can indicate the 
relationship between capacitor 1rC  and phase margin as shown in 
Fig.29. 

1 2,R R  are equivalent resistors, 1 2,C C  are equivalent 
capacitances, 1 2,m mG G  are transconductances, 1rC  is 
compensation capacitance. 

At feedback factor 0.01f   condition, we can obtain the fitted 
curve as Fig.30 and the relation function between PM with capacitor 
as following: 

36 3 24 2 12
1 1 11.026 1.52 4.488 7.24r r rPM e C e C e C       

 ..................................... (80) 

15 3 13 2 12 121 6.343 2.091 2.493 9.822Cr e PM e PM e PM e         
 ..................................... (81) 

If we want to obtain 45  phase margin, the required 
corresponding capacitor value is 0.25694nF by calculated from 
Eq. (81). 

In order to verify this result, we have conducted simulation for 
the amplifier circuit shown in Fig.28, the feedback system circuit 
shown in Fig.1 (b) when the feedback factor 0.01f  , and 
compensation capacitance is 0.25694nF. The simulation result is 
shown in Fig.31. The phase margin result is 180 133 47      
obtained from LTspice simulation, which matches the result of 
45 obtained from Eq. (80). 

Although the relationship between Cr1 and the phase margin 
(corresponding to Fig.29) can be obtained by using the small 

 

 
Fig. 24.  Bode plot for case (3) of the critical stable 
amplifier 4. 

 

 

Fig. 25.  Pulse response for case (1) of the stable 
amplifier 4. 

 

 
Fig. 26.  Pulse response for case (2) of the stable 
amplifier 4. 

 

 
Fig. 27.  Pulse response for case (3) of the critical 
stable amplifier 4. 

 

 

 

(a) Transistor level circuit 

 
(b) Small-signal model 

Fig. 28.  Two-pole amplifier with an inter-stage 
capacitance. 

 

 
Fig. 29.  Relationship between PM with compensation 
capacitor 1rC  in various feedback factor f  conditions. 

 

 
(a) Compensation capacitor Cr1 as an independent variable and PM as a 

dependent variable 

 
(b) PM as an independent variable and compensation capacitor Cr1 as a 

dependent variable 

Fig. 30.  Relationship between PM with compensation 
capacitor 1rC  at feedback factor 0.01f   condition. 
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equivalent circuit which can indicate the variation tendency of 
stability following circuit parameter variation. But as we see, this 
relationship only can reflect the impact from single circuit 
parameter on stability. The advantages of the proposed method are 
the explicit stability conditions (8), (13), (18) and the relationship 
between parameter and phase margin (corresponding function (75) 
and Fig.8); we can overall consider multiple circuit parameters 
one time as well as the trade-off analysis between the influences 
on system stability from every single circuit parameter. 

7. Discussions 

According to the above consideration, we propose the following 
for operational amplifier stability analysis and design: 
(1) Depict a small signal equivalent circuit for the operational 

amplifier circuit in open-loop structure. 
(2) Derive its open-loop transfer function. 
(3) Derive its closed-loop transfer function and obtain its 

characteristic equation. 
(4) Apply the R-H stability criterion and obtain the relation 

function between the R-H parameter with phase margin. 
(which is not easy to obtain with Bode plot) 

(5) Then use this relation function for circuit parameters.  
The R-H method would be effective especially for multi-stage 
operational amplifiers (high-order systems). 

It may be true that derivation of precise explicit transfer function 
with polynomials of s is difficult due to many parasitic components 
in the operational amplifier circuit. However, even if the derived 
equivalent circuit or transfer function uses only major components 
and neglects parasitic components, the R-H method provides the 
information about which major parameter values should be 
increased or decreased for stability; its usage together with the 
Bode plot would be effective. 

8. Conclusion 

This paper proposes to use a new stability analysis and design 
method for the operational amplifier feedback circuit based on 
principle of the Routh-Hurwitz stability criterion. We have shown 
the equivalence between Nyquist and Routh-Hurwitz stability 
criteria for analysis and design of the operational amplifier stability 
under some conditions, and have deduced the relationship between 
Routh-Hurwitz stability criterion parameters with phase margin of 
the operational amplifier. We have shown that they are monotonic 
relationship. In the verification and simulation parts, we have 
confirmed with SPICE simulation that this method is equivalent to 
the Bode plot method, and satisfactory results have been obtained 
with LTspice simulations at transistor level circuit. The acquisition 

and application of the relationship between R-H stability criterion 
parameters with phase margin demonstrate the feasibility of 
proposed method on both side of theory and practice.  

Compared to the conventional Bode plot method which only 
can qualitatively judge the stability, the proposed method not only 
can judge the stability but also can do further quantitative analysis; 
this clarifies which circuit parameters influence the operational 
amplifier stability, and we know whether these circuit parameters 
should be increased or decreased. 

The R-H method has an advantage of being able to obtain 
explicit stability condition for circuit parameters; hence we expect 
that the R-H method can be practically used together with the 
Bode plot method. 
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