August 7-10, 2022

Low Switching Loss Dual RESURF 40 V N-LDMOS with Grounded Field Plate for DC-DC Converters

Hao Yang Du, Jun-ichi Matsuda Anna Kuwana, Haruo Kobayashi

Division of Electronics and Informatics Gunma University

Kobayashi Lab. Gunma University

OUTLINE

- Research Objective and Background
- Proposed LDMOS Structure and Operation
- Optimization Simulation Results
- Discussion
- Conclusion

OUTLINE

- Research Objective and Background
- Proposed LDMOS Structure and Operation
- Optimization Simulation Results
- Discussion
- Conclusion

Development of LDMOS structure for DC-DC converters handling 40V in automotive applications

LDMOS: Lateral Double Diffused MOS

DC-DC Converter for Automotive Application

- High efficiency
- High frequency
- High reliability

Requirements for its Switching Device

- Low specific on-resistance
- Low switching loss
- High hot carrier endurance
- Wide SOA

5/34

Our Approach

LDMOS for 40V switching device

- Mature CMOS process usage
- One-chip integration with other circuits

Based on our Previous Proposed LDMOS

- Dual RESURF structure
- Field plate connected to gate

New Proposal

- Dual RESURF structure
- Field plate connected to ground
 - \rightarrow Miller capacitance reduction

Investigation of Its optimal size and location

TCAD Simulation Verification

Conventional LDMOS Transistor Structure

Points to be improved

- Low hot carrier endurance by drain avalanche hot carriers high electric field in Region A
 - Drain current expansion (CE)
 → narrow SOA
 by high electric field in Region B
 due to Kirk effect
- High specific on-resistance
 Low impurity concentration in n-drift
 region
- Premature breakdown by high electric field in Region C under the drain

Proposed LDMOS Transistor Structure

P-buried Layers (Dual RESURF Structure)

• PBL1, 2

■N-drift Layers

• NDL1, 2

• NDL3:

Specific on-resistance reduction CE (current expansion) suppression

Grounded Field Plate (GFP)

- Complements RESURF effect in drift region
- Miller capacitance reduction
 → Low switching loss

Investigation of its optimal location, size

Research Overview

Our previous proposal:

0.18 µm CMOS compatible dual REduced SURface Field (RESURF) 40 V N-LDMOS transistor with grounded field plate

Our research here:

- Grounded field plate optimization by changing location, length of grounded field plate
- Its process feasibility investigation from mass production viewpoint
- Verification with TCAD simulation

OUTLINE

- Research Objective and Background
- Proposed LDMOS Structure and Operation
- Optimization Simulation Results
- Discussion
- Conclusion

Proposed LDMOS Structure and Feature

Length of drift region $\rm L_{\rm D}\,$: 2650 nm

Field plate L_{FP}(standard L_{FP-std}): 1625 nm

Thickness of oxide interlayer between field plate and drift region T_{OX1} (standard $T_{OX1-std}$): 308 nm

Oxide interlayer between field plate and the gate T_{OX2} (standard $T_{OX2-std}$): 100 nm

Breakdown voltage between drain and source BV_{DS} : 61 V

Simulation Circuit as Switching Device

Specific on-resistance: 40.8 mΩmm²

Load resistance R_{L_1} 5.33 Ω mm²

Gate resistance R_G : 1.07 Ω mm²

Extrapolated threshold voltage: 1.05V

12/34

Device Structures and Features

[1] J. Matsuda, et. al., "A Low Switching Loss 40 V Dual RESURF LDMOS Transistor with Low Specific On-Resistance", in *Proc. ICMEMIS*, Kiryu, 2017.
 [2] I. Matsuda, et. al., "Lew Switching Loss and Scalable 20, 40 V/L DMOS Transistor.

[2] J. Matsuda, et. al., "Low Switching Loss and Scalable 20-40 V LDMOS Transistors with Low Specific On-Resistance", in *Proc. ICTSS*, Kiryu, 2018.

Turn-On Simulation Results (Region B)

14/34

Turn-On Simulation Results (Region B)

Turn-Off Simulation Results (Region B)

Conventional device

Turn-Off Simulation Results (Region B)

Proposed device

OUTLINE

- Research Objective and Background
- Proposed LDMOS Structure and Operation
- Optimization Simulation Results
- Discussion
- Conclusion

L_{FP} for Drain Loss E_{D Loss}

During turn-on/off :

 ΔL_{FP} increase or ΔT_{OX1} decrease

Displacement current increase

 $\Delta T_{OX1} (= T_{OX1} - T_{OX1_std})$ - 50 400 300 500 600 $\Delta L_{FP} (\text{nm})$

19/34

 $\Delta L_{FP} (= L_{FP} - L_{FP \text{ std}})$

 E_{D_Loss} increase

L_{FP} for Gate Loss $E_{G \text{ Loss}}$

- Increase for ΔT_{OX1} decrease

L_{FP} for Switching Loss

21/34

L_{FP} for BV_{DS}

 ΔT_{OX1} : -50 nm~+50 nm Peak in BV_{DS}- ΔL_{FP}

 ΔT_{OX1} : +100nm No peak in BV_{DS}- ΔL_{FP}

For $BV_{DS} \ge 60V$ (High reliability):

 ΔT_{OX1} =100nm, $\Delta L_{FP} \ge$ 200nm

or $\Delta T_{OX1} = 50$ nm, $\Delta L_{FP} \ge 200$ nm

L_{FP} for BV_{DS}

Breakdown location

L_{FP} , T_{OX1} for Switching Loss

For $BV_{DS} > 60 V$	
ΔL_{FP} (nm)	ΔT_{OX1} (nm)
$0 \leq \Delta L_{FP} \leq 700$	$-50 \ \leq \Delta T_{OX1} \leq 0$
$200 \ \leq \Delta L_{FP} \leq 700$	$\Delta T_{OX1} = +50$

OUTLINE

- Research Objective and Background
- Proposed LDMOS Structure and Operation
- Optimization Simulation Results
- Discussion
- Conclusion

L_{FP} for Turn-on Characteristics

- Saturation state: 100 ps 320 ps
- C_{FD} increase \rightarrow
 - $J_{PB}+J_{FP}+J_{Sub}$ increase, flow in drift region J_D decrease
- Voltage drop in drift region →
 Higher V_{DS}

L_{FP} for Turn-on Characteristics

EACC t-on: Accumulated energy dissipation density

L_{FP} for Turn-off Characteristics

 L_{FP} increase ($\Delta L_{FP} = +600$ nm)

V_{DS} decrease

Drain current density (J_D) increase

Saturation state: 320 ps - 2000 ps

28/34

- C_{FD} increase →
 J_{PB}+J_{FP}+J_{sub} →
 added to drain current density J_D
 → higher J_D
- Short current path decreases voltage drop in drift region \rightarrow lower V_{DS}

At rising P_{D_t-on}

F

$$P_{D_t-on}(\Delta L_{FP} = +600 \text{ nm}) \leq P_{D_t-on}(\Delta L_{FP} = 0 \text{ nm})$$

Higher J_D due to higher displacement current density $J_{PB}+J_{FP}+J_{sub}$ for $\Delta L_{FP} = +600$ nm

• At falling P_{D_t-on}

 $P_{D_t-on}(\Delta L_{FP} = +600 \text{ nm}) > P_{D_t-on}(\Delta L_{FP} = 0 \text{ nm})$

T_{OX1} for Turn-on Characteristics

T_{OX1} for Turn-off Characteristics

Eacc_t-off decrease,

Turn-off loss increase with T_{OX1} increase

under intrinsic MOSFET saturation

OUTLINE

- Research Objective and Background
- Proposed LDMOS Structure and Operation
- Optimization Simulation Results
- Discussion
- Conclusion

Conclusion

LDMOS device design for 40V DC-DC converter

- Field Plate connected to ground
- Its size, location optimization of ΔL_{FP} , ΔT_{OX1} For 0 nm $\leq \Delta L_{FP} \leq 200$ nm, -50 nm $\leq \Delta T_{OX1} \leq 0$ nm,
 - O Switching loss reduction by 50 %
 - O High ESD endurance
- Verified with TCAD simulation

- AdvanceSoft Corporation for providing 3D TCAD simulator.
- Japan Science and Technology Agency for assistance of this simulator development with A-STEP program.

Thank you for your listening

Kobayashi Lab. Gunma University