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Objective of This Paper

Revisit legacy analog neural networks and 
explore new analog circuit areas

[RC Network Theory] 
Spatial and temporal dynamics of active resistor network

[New ADC Architecture]
Hopfield Network ADC with switched capacitor circuits

[New Resistor Ladder DAC]
Motivated by the above two analog neural networks
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Active resistor network:  positive and negative resistors
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Research Outline of Active Network Dynamics 

Our previous theorem:
Spatial and temporal stability conditions are equivalent
for uniform active resistor network

This paper:
Investigation of spatial and temporal dynamics 
for non-uniform active resistor network

Four new findings
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Retina Chip with Positive Resistor Network

High-speed analog image-smoothing processor

[1] C. A. Mead, Analog VLSI and Neural Systems, Addison Wesley, 1989

1D image case

Node voltages： Output image

Injected currents at nodes： Input image

g0 = 1/R0
g1 = 1/R1
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Spatial Impulse Response of Retina Chip

Cusped spatial impulse response

Node voltage Cusped Convolution Kernel
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Gaussian Chip with Active Resistor Network

[2] H. Kobayashi, J. L. White, A. A. Abidi, “An Active Resistor Network for Gaussian Filtering of Images'', 
IEEE Journal of Solid-State Circuits (May 1991)

g0 = 1/R0
g1 = 1/R1
g2 = 1/R2

R2 = − 4R1 < 0Negative resistor

Injected currents at nodes： Input image

Node voltages： Output image

High-speed analog image processor
1D image case
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Spatial Impulse Response of Gaussian Chip

Flat-top spatial impulse response

Node voltage
More desirable 
for image processing
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Negative Resistor with Standard CMOS

V+dV @ Node A >          V @ Node B                        

Current I =𝑑𝑉
𝑅2
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Uniform Resistor Network for Spatial Dynamics

Equal

Equal

Equal

● Shift invariant
● Spatial transfer function can be defined
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Temporal Dynamics with R, C

Capacitances are considered for temporal dynamics

g  g  g  g  g  g  g  g  g                             

g  g  g  g  g  g  g  g  
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Simulation Results: Spatial Temporal Stabilities

Temporally stableSpatially stable

𝑅0 = Τ1 𝑔0 = 200kΩ, Τ𝑅1 = 1 𝑔1 = 5kΩ, Τ𝑅2 = 1 𝑔2 = −20kΩ

Spatial
impulse

response

Temporal
step

response
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Simulation Results: Spatial Temporal Instabilities

Temporally unstableSpatially unstable

𝑅0 = Τ1 𝑔0 = 200kΩ, Τ𝑅1 = 1 𝑔1 = 5kΩ, Τ𝑅2 = 1 𝑔2 = −17kΩ

Spatial
impulse

response

Temporal
step

response
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Circuit Network Theorem

For uniform network with positive and negative resistors,
spatial and temporal stability conditions are equivalent.

[3] T. Matsumoto, H. Kobayashi, Y. Togawa, 
“Spatial Versus Temporal Stability Issues in Image Processing Neuro  h ips'', 
IEEE Trans. Neural Networks, (July 1992).

[4] H. Kobayashi, T. Matsumoto, J. Sanekata, 
“Two-Dimensional Spatio-Temporal Dynamics of Analog Image Processing Neural Networks'',
IEEE Trans. Neural Networks (Oct. 1995).

How about non-uniform network ?
A part is shown in

[5] M.  Chiba, et. al., "Spatial and Temporal Dynamics of Non-Uniform Active Resistor Networks" 
IEEE 16th International Conference on Solid-State and Integrated Circuit Technology (Oct. 2022)
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Non-Uniform Resistor Network

Need NOT Equal

Need
NOT
Equal Need NOT Equal

● Shift variant
● Spatial transfer function CANNOT be defined

-3                           -1                          1                             3

-5               -4           -3              -2         -1              1               2           3                4         5

-5               -4           -3              -2         -1              0            1               2           3             4             5

-4                             -2                           0                             2                        4   
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Finding 1

If there is a node where the input current is injected and 
its node voltage as the spatial impulse response is negative,

the network is temporally unstable 

𝑅0 = 2kΩ
𝑅1 = 1kΩ

𝑅T = −2kΩ

Temporally unstableSpatial Impulse Response

Negative
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1st Nearest Connection (2)

R0A R0A R0A R0A R0A R0AR0BR0BR0BR0BR0B

1kΩ

−1kΩ

10μA

Negative Temporally Unstable

1kΩ
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1st Nearest Connection (3)

R0A R0A R0A R0A R0A R0AR0BR0BR0BR0BR0B

1kΩ

1kΩ

10μA

−1kΩ

Negative Temporally Unstable
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2nd Nearest Connection (1)

2kΩ

1kΩ

−1kΩ

1kΩ

10μA.

Negative Temporally Unstable
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2nd Nearest Connection (2)

−2kΩ

−1kΩ

2kΩ

0.5 kΩ

10μA

Negative Temporally Unstable



/4723
3rd Nearest Connection 

R0a = 2kΩ, R0b = 3kΩ, R0c = −0.25k, R1 = 1kΩ, R3a = −4kΩ
R3b = −3k, R3c = −2k, R3d = −1kΩ, I = 10μA

Negative Temporally Unstable



/4724
Finding 2

For all nodes,
“The input current is injected at each one node and 
its node voltage as the spatial impulse response is positive”,

Some networks can be temporally unstable.

We have found such an example by simulation
Theoretical analysis is left. 
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3rd Nearest Connection 

R0a = 2kΩ, R0b = 3kΩ, R0c= −0.25k, R1 = 1kΩ, R3a = −1k, R3b= −2k, R3c = −3k, R3d = −4kΩ, I = 10μA

For all nodes, “the input current is injected at a node and 
its node voltage as the spatial impulse response is positive”,

Temporally 
Unstable

Positive
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Finding 3

Temporal stability and instability can depend on 
capacitors (C) from nodes to ground.

R0a = −1 kΩ, R0b= 1 kΩ, R0c= 0.5 kΩ, R1a= −1 kΩ, R1b= 0.5 kΩ, I = 10 μA,

Temporally Unstable                           Unstable Stable

Proved with theory
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Finding 4

Spatial stability cannot be defined rigorously 
for a finite size of the network.

Only spatial dynamics can be discussed.
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Our Four New Findings

For general non-uniform active resistor network dynamics,
four new properties have been found
with simulation and theoretical analysis.

Their rigorous proof has NOT been completed yet.
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Hopfield Network

Asymmetric Hopfield Network

Only feedforward paths
No feedback paths

No local minima problem
feedforward
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Hopfield Network ADC with Resistors

Asynchronous SAR ADC

● Very fast

● No high freq. internal clock

● N(=6) comparators (inverters)

● Huge resistors (Giga Ω-Tera Ω）
due to inverter poor current drivability

Big disadvantage
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Internal Structure of Hopfield Network ADC

1-bit
DAC

2-bit
DAC

3-bit
DAC

5-bit
DAC

3-bit
DAC

Internal DACs in parallel

Comparators (inverters) 
in parallel
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Hopfield Network ADC with Switched Capacitor Circuit

V1 V2

Replacement 

Huge resistor

Hopfield Network ADC          Practical 

[6] X. Bai, et. al., "Asynchronous Capacitive SAR ADC based on Hopfield Network", 
IEICE Electronics Express (Sept. 2022)
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Chopper Comparator Usage

Vin
VT

C
+
+

-
-

Phase I

Vin Vout Vin Vout

Vdd

Vref

VT + (Vref – Vin)

C
+
+

-
-

Phase II

Vout=
Vdd (in case Vref < Vin)

0   (in case Vref > Vin)

Vdd

Vdd
Vout

Vin0

VT

VT

● Only digital circuit (inverter, CMOS switch) usage 



/4735

Simulation Confirmation of Basic Operation

Vin

D1

D2

D3

D4

D5

D6

Detailed circuit design is underway
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Summary of Hopfield Network ADC

● Asymmetric Hopfield network ADC with resistors
works as very fast asynchronous SAR ADC

 

Huge resistors are required
- Chip area    Very big

● Their replacement with switched capacitors
 - Chip area    Modest
      - Asynchronous SAR ADC with N comparators in parallel

- Non-binary (redundant) configuration
Error tolerant for higher bits

Under investigation
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（１） Generalized Resistor Ladder DAC

[7] M. Hirai, et. al., "Systematic Construction of Resistor Ladder Network for N-ary DA s,” 
IEEE International Conference on ASIC (Oct. 2019)

[8] M. Hirai, et. al., 
"Digital-to-Analog Converter Configuration Based on Non-uniform Current Division Resistive-Ladder,“
International Technical Conference on Circuits/Systems, Computers and Communications (June 2021)

Systematic construction method for general resistor ladder DAC
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(2) Proposed Resistor Ladder DAC

For the same total currents 
and total resistor values,

2x gain of R-2R DAC

For R, I variations,
comparable DNL to R-2R DAC

Digital input code

D
N

L 
(σ

) [
LS

B]

8-bit binary-quaternary-unary connected 
resistor ladder DAC

Binary   quaternary unary 7

3  lower bits       2 middle bits    3  higher bits

Monte Carlo Simulation Results
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(3) Fibonacci Sequence Weighted DAC

Fibonacci sequence weights      

Error
tolerant

SAR ADC

Redundancy
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Fibonacci Sequence Weighted DAC

Fibonacci sequence weights      

Error
tolerant

SAR ADC
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Fibonacci Sequence Number

Radix 1.62 weighted
DAC
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R-R Resistor Ladder
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R-R Resistor Ladder and Fibonacci Ratio

Current division by Fibonacci ratio at each node



/4745
Fibonacci Sequence Weighted DAC

+
Vout

[9] T. Arafune, et. al., “Fibonacci Sequence Weighted SAR AD  Algorithm and its DA  Topology,” 
IEEE International Conference on ASIC (Nov. 2015).
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Conclusion

● Spatial and temporal dynamics of active resistor network
in vision chip have close relationships.

● Hopfield Network ADC becomes practical
using switched capacitor circuits

● Motivated by the above, 
new resistive ladder DACs have been investigated.

Legacy analog neural networks can explore new analog circuit.
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