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Objective of This Paper

Revisit legacy analog neural networks and
explore new analog circuit areas

[RC Network Theory]
Spatial and temporal dynamics of active resistor network

[New ADC Architecture]
Hopfield Network ADC with switched capacitor circuits

[New Resistor Ladder DAC]
Motivated by the above two analog neural networks
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Outline

» Dynamics of Active Resistor Network in Vision Chip

Active resistor network: positive and negative resistors
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Research Outline of Active Network Dynamics

Our previous theorem:
Spatial and temporal stability conditions are equivalent
for uniform active resistor network

$

This paper:
Investigation of spatial and temporal dynamics
for non-uniform active resistor network

— > Four new findings
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Retina Chip with Positive Resistor Network

High-speed analog image-smoothing processor

1D image case go = 1/Ro

Node voltages: Output image g1 =1/R1

/1N

N1/

Injected currents at nodes: Inputimage

[1] C. A. Mead, Analog VLSI and Neural Systems, Addison Wesley, 1989
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Spatial Impulse Response of Retina Chip
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Gaussian Chip with Active Resistor Network

High-speed analog image processor

1D image case

Negative resistor
Node voltages: Output image

/|

N1/

Injected currents at nodes: Input image

[2] H. Kobayashi, J. L. White, A. A. Abidi, “An Active Resistor Network for Gaussian Filtering of Images",

IEEE Journal of Solid-State Circuits (May 1991)

go = 1/Ro
g1 = 1/R1
g2 = 1/R2

R2=—-4R1<0
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Spatial Impulse Response of Gaussian Chip
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More desirable

for image processing

Flat-top spatial impulse response
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Negative Resistor with Standard CMOS

V+dV @ Node A > V @ Node B
—

av

| =
Current R,




12/47

Uniform Resistor Network for Spatial Dynamics

Equal

@ Shift invariant
@ Spatial transfer function can be defined
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Temporal Dynamics with R, C

Capacitances are considered for temporal dynamics
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Simulation Results: Spatial Temporal Stabilities

Spatial
impulse
response
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Simulation Results: Spatial Temporal Instabilities

Spatial
impulse
response
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Circuit Network Theorem

For uniform network with positive and negative resistors,
spatial and temporal stability conditions are equivalent.

[3] T. Matsumoto, H. Kobayashi, Y. Togawa,
“Spatial Versus Temporal Stability Issues in Image Processing Neuro h ips",
IEEE Trans. Neural Networks, (July 1992).

[4] H. Kobayashi, T. Matsumoto, J. Sanekata,
“Two-Dimensional Spatio-Temporal Dynamics of Analog Image Processing Neural Networks",
IEEE Trans. Neural Networks (Oct. 1995).

How about non-uniform network ?

A part is shown in

[5] M. Chiba, et. al., "Spatial and Temporal Dynamics of Non-Uniform Active Resistor Networks"
IEEE 16th International Conference on Solid-State and Integrated Circuit Technology (Oct. 2022)
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Non-Uniform Resistor Network

Need NOT EqK

Need
NOT

Equal  Need NOT Equal

@ Shift variant
@ Spatial transfer function CANNOT be defined
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Finding 1

If there is a node where the input current is injected and
its node voltage as the spatial impulse response is negative,
mm) the network is temporally unstable

RO — ZkQ
Rl — 1kQ
Rt = —2kQ
@
Negative

Spatial Impulse Response Temporally unstable



15t Nearest Connection (2)

10pA

Negative Temporally Unstable
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15t Nearest Connection (3)

10pA

Negative Temporally Unstable
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2"d Nearest Connection (1)

10pA.  1kQ

Negative Temporally Unstable
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2"d Nearest Connection (2)

—1kQ
/ M1 10pA
R R R R> R R R R R R
RszRzR Rz Rz o [ [ R %2
MA’AMAA’A”AM R1 Rl R1VR1/ R 1_, _____ R1 \R 2kQ)
R Roa Roa Roa Roa R Roa R0a R0a Roc Rote Roa «—
—> | Rog Ro Ron Rot, Ron Ron Ror, Ron Rog E Rod 1 Rop
0.5 kQ
NP

\

Negative Temporally Unstable
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3@ Nearest Connection
&

R3p R3¢ R3c
IN‘, AAA NA'A'

bl

R 3a
NA\"‘\'

R3a

R3p R3¢ R3g R3c

ROa
Rob

ROa
Rob

ROa

Rob RoB Rod Rob

Roa Roa Roa
Rog Rob Rog
Negative
Rpa =

R3p

RBa

R3a

ROa

Rob

T ST S T A

ROa
Rob

Temporally Unstable

2k, Ry, = 3kQ, Ry = —0.25k, R; = 1kQ, R4, = —4kQ

Rs, = —3k, Rs. = —2k, R3q = —1kQ, [ = 10pA

ROa
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Finding 2
For all nodes,
“The input current is injected at each one node and

its node voltage as the spatial impulse response is positive”,
=) Some networks can be temporally unstable.

We have found such an example by simulation
Theoretical analysis is left.
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3@ Nearest Connection

For all nodes, “the input current is injected at a node and

its node voltage as the spatial impulse response is positive”,
DI

R3a R3p R3¢ R3¢ R3b R33
A Ay \r
R3a R3c R3g R3¢ R3p R3a
el N/ LT N N T gy TN\
AR1 /R T R ARN RV Ry ZBRN/RIV RN AN/ Ry U Ry RINVRY RN RY RiVRL /RINR] RNRy
Roa Roa Roa Roa Roa Roa R0a Roa Roa Roa Roa Roa
Rop Roh Rog Ron Rog Roc Rob Rob Rok Rob Rob

ROa = ZkQ, Rob == BkQ, R0C= _025k, Rl = 1kQ, Rga = _1k, R3b= _Zk, R3C = _3k, R3d = _4kﬂ, [ = 10L|.A

Temporally

/ Unstable

Positive
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Finding 3

Temporal stability and instability can depend on
capacitors (C) from nodes to ground.

Roa = —1kQ, Ryp=1kQ, Rye=05kQ, Ryu=-1k0, Ryp=0.5kQ, 1=10pA,

Temporally Unstable Unstable Stable

‘ Proved with theory
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Finding 4

Spatial stability cannot be defined rigorously
for a finite size of the network.

@

Only spatial dynamics can be discussed.
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Our Four New Findings

For general non-uniform active resistor network dynamics,
four new properties have been found
with simulation and theoretical analysis.

Il

Their rigorous proof has NOT been completed yet.
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Outline

- Switched Capacitor Network ADC
Inspired by Hopfield Network
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Hopfield Network
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Asymmetric Hopfield Network

\ 4

Only feedforward paths
No feedback paths

4

No local minima problem
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Hopfield Network ADC with Resistors

sampling clock

- - __ — R — .
%’c | 1_ R l_ R l— R l- R l- M R
Vin ; CH I 32RH
analog (oY e Asynchronous SAR ADC
mpu
[L8R 1 [L8RIT M8Rt @ Very fast
4RH 4R M 4R H4R K
L L L @ No high freq. internal clock
[12R -t [12R 4 [2R 4 [2RH f2RH
V V V \/ \/ V @® N(=6) comparators (inverters)
@® Huge resistors (Giga Q-Tera Q)
due to inverter poor current drivability
Y Y Y Y Yy ¥y ol

ol 2 D3 D6 Big disadvantage
dlgltal output
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Internal Structure of Hopfield Network ADC

1-bit 2-bit 3-bit 3-bit  5-bit

: DAC DAC DAC DAC DAC
sampling clock - N

4 N aY S R N/ )
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& [ETs eSSl
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nternal DACs in parallel
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Hopfield Network ADC with Switched Capacitor Circuit

Huge resistor

Replacement

V1 V2 ‘

Hopfield Network ADC ==» Practical

[6] X. Bai, et. al., "Asynchronous Capacitive SAR ADC based on Hopfield Network",
|IEICE Electronics Express (Sept. 2022)
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Chopper Comparator Usage

Phase | Vad
C Vin Vout  Vin Vout
+ —
Vin I I DD—
- VT
Ph [ Vout
ase | Vad
Vdd (in case Vref < Vin)
C _
1 0- Vout= - VT
Vref m I I DD—' 0 (in case Vref > Vin)
VT + (Vref — Vin) \Vas Vdd

@® Only digital circuit (inverter, CMOS switch) usage
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Simulation Confirmation of Basic Operation

- V{vref _
Vin 1.5V — e
A —
D1 1.7V ‘
4:::2-,4 ‘r‘:‘vnum
D2 v
o — T E— —
D3 1.7v=
.
D4 v
o _
D5 1.7vH
o — s —
os T T
0.3V . T T T . T T T —
0.0ms 0.Ams 0.2ms 0.3ms 0.4ms 0.5ms 0.6ms 0.7ms 0.8ms 0.9ms 1.0ms

Detailed circuit design is underway
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Summary of Hopfield Network ADC

@® Asymmetric Hopfield network ADC with resistors
works as very fast asynchronous SAR ADC

—> Huge resistors are required
- Chip area m) Very big
@® Their replacement with switched capacitors
- Chip area B Modest
- Asynchronous SAR ADC with N comparators in parallel
- Non-binary (redundant) configuration
» Error tolerant for higher bits

Under investigation
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Outline

- Design and Analysis of Resistor Network DAC
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(1) Generalized Resistor Ladder DAC

Systematic construction method for general resistor ladder DAC

[7] M. Hirai, et. al., "Systematic Construction of Resistor Ladder Network for N-ary DA s,”
IEEE International Conference on ASIC (Oct. 2019)

[8] M. Hirai, et. al.,
"Digital-to-Analog Converter Configuration Based on Non-uniform Current Division Resistive-Ladder,"”
International Technical Conference on Circuits/Systems, Computers and Communications (June 2021)
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(2) Proposed Resistor Ladder DAC

Binary quaternary unary 7

Ru§ zﬁu§ zRu§ gﬂé

3 lower bits 2 middle bits 3 higher bits

L Digital input code
8-bit binary-quaternary-unary connected J P

resistor ladder DAC Monte Carlo Simulation Results

For the same total currents For R. | variations

and totgl resistor values, comparable DNL to R-2R DAC
2x gain of R-2R DAC
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(3) Fibonacci Sequence Weighted DAC

SAR ADC

Error
—

tolerant
Fibonacci sequence weights

Redundancy
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Fibonacci Sequence Weighted DAC

SARADC oo

|

|

|

|

|

|

 Error
|

, tolerant
|

|

|

|

|

|

|

|
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Fibonacci Sequence Number

Radix 1.62 weighted
DAC
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R-R Resistor Ladder



44 /47

R-R Resistor Ladder and Fibonacci Ratio

Current division by Fibonacci ratio at each node
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Fibonacci Sequence Weighted DAC

“@ﬂ

[9] T. Arafune, et. al., “Fibonacci Sequence Weighted SAR AD Algorithm and its DA Topology,”
IEEE International Conference on ASIC (Nov. 2015).
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Outline
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Conclusion

@® Spatial and temporal dynamics of active resistor network
In vision chip have close relationships.

@® Hopfield Network ADC becomes practical
using switched capacitor circuits

@® Motivated by the above,
new resistive ladder DACs have been investigated.

4

Legacy analog neural networks can explore new analog circuit.
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