Track 1: Analog/Mixed-Signal Circuit Design and Related Technologies

Invited

Revisit to RC Linear Circuit Theory

Haruo Kobayashi

K. Otomo, L. Nengvang, M. Chiba, S. Katayama, K. Yoshihiro, A. Kuwana, T. Ooide, H. Tanimoto

Gunma University Kitami Institute of Technology

Kobayashi Lab. Gunma University

Outline

- Objective of This Paper
- Active Resistor Network
 - Spatial and Temporal Dynamics
 - Three New Property Findings
- ReDAC with RC Filter
 - Conventional ReDAC with LPF
 - Proposed ReDAC with HPF
- Conclusion

ReDAC: Relaxation Digital-to-Analog Converter

Outline

- Objective of This Paper
- Active Resistor Network
 - Spatial and Temporal Dynamics
 - Three New Property Findings
- ReDAC with RC Filter
 - Conventional ReDAC with LPF
 - Proposed ReDAC with HPF
- Conclusion

To show research for RC linear circuit has not ended yet.

[RC Network Theory]

Spatial and temporal dynamics of active resistor network.

Active resistor network: positive and negative resistors

[Application of RC Circuit]

Relaxation DAC with RC high-pass filter

for positive and negative polarity output

Outline

- Objective of This Paper
- Active Resistor Network
 - Spatial and Temporal Dynamics
 - Three New Property Findings
- ReDAC with RC Filter
 - Conventional ReDAC with LPF
 - Proposed ReDAC with HPF
- Conclusion

Our previous theorem:

Spatial and temporal stability conditions are equivalent for uniform active resistor network

This paper:

Investigation of spatial and temporal dynamics

for non-uniform active resistor network

Outline

- Objective of This Paper
- Active Resistor Network
 - Spatial and Temporal Dynamics
 - Three New Property Findings
- ReDAC with RC Filter
 - Conventional ReDAC with LPF
 - Proposed ReDAC with HPF
- Conclusion

Retina Chip with Positive Resistor Network

High-speed analog image-smoothing processor

Injected currents at nodes: Input image

[1] C. A. Mead, Analog VLSI and Neural Systems, Addison Wesley, 1989

Spatial Impulse Response of Retina Chip

Gaussian Chip with Active Resistor Network

Injected currents at nodes: Input image

[2] H. Kobayashi, J. L. White, A. A. Abidi, "An Active Resistor Network for Gaussian Filtering of Images", IEEE Journal of Solid-State Circuits (May 1991)

Spatial Impulse Response of Gaussian Chip

Flat-top spatial impulse response

Negative Resistor with Standard CMOS

Uniform Resistor Network for Spatial Dynamics

- Shift invariant
- Spatial transfer function can be defined

Temporal Dynamics with R, C

Capacitances are considered for temporal dynamics

Simulation Results: Spatial Temporal Stabilities

Spatially stable

Temporally stable

Simulation Results: Spatial Temporal Instabilities

Spatially unstable

Spatial

impulse

response

Temporally unstable

Temporal step response

For uniform network with positive and negative resistors, spatial and temporal stability conditions are equivalent.

 [3] T. Matsumoto, H. Kobayashi, Y. Togawa,
 "Spatial Versus Temporal Stability Issues in Image Processing Neuro hips ", IEEE Trans. Neural Networks, (July 1992).

[4] H. Kobayashi, T. Matsumoto, J. Sanekata,

"Two-Dimensional Spatio-Temporal Dynamics of Analog Image Processing Neural Networks", IEEE Trans. Neural Networks (Oct. 1995).

How about non-uniform network ?

- Objective of This Paper
- Active Resistor Network
 - Spatial and Temporal Dynamics
 - Three New Property Findings
- ReDAC with RC Filter
 - Conventional ReDAC with LPF
 - Proposed ReDAC with HPF
- Conclusion

Non-Uniform Resistor Network

Shift variant

Spatial transfer function CANNOT be defined

Finding 1

20/43

If there is a node where the input current is injected and its node voltage as the spatial impulse response is negative,

the network is temporally unstable

Spatial Impulse Response

1st Nearest Connection (2)

1st Nearest Connection (3)

2nd Nearest Connection (1)

2nd Nearest Connection (2)

Negative

Temporally Unstable

3rd **Nearest Connection**

Negative

Temporally Unstable

$$\begin{split} R_{0a} &= 2k\Omega, R_{0b} = 3k\Omega, R_{0c} = -0.25k, R_1 = 1k\Omega, R_{3a} = -4k\Omega\\ R_{3b} &= -3k, R_{3c} = -2k, R_{3d} = -1k\Omega, I = 10\mu A \end{split}$$

Finding 2

For all nodes,

"The input current is injected at each one node and

its node voltage as the spatial impulse response is positive",

Some networks can be temporally unstable.

We have found such an example by simulation Theoretical analysis is left.

3rd Nearest Connection

For all nodes, "the input current is injected at a node and its node voltage as the spatial impulse response is positive",

$$R_{0a} = 2k\Omega$$
, $R_{0b} = 3k\Omega$, $R_{0c} = -0.25k$, $R_1 = 1k\Omega$, $R_{3a} = -1k$, $R_{3b} = -2k$, $R_{3c} = -3k$, $R_{3d} = -4k\Omega$, $I = 10\mu A$

Temporally Unstable

Finding 3

Temporal stability and instability can depend on capacitors (C) from nodes to ground.

 $R_{0a} = -1 k\Omega$, $R_{0b} = 1 k\Omega$, $R_{0c} = 0.5 k\Omega$, $R_{1a} = -1 k\Omega$, $R_{1b} = 0.5 k\Omega$, $I = 10 \mu A$,

Temporally Unstable

Unstable

Stable

Proved with theory

For general non-uniform active resistor network dynamics, three new properties have been found with simulation and theoretical analysis.

Their rigorous proof has NOT been completed yet.

Outline

- Objective of This Paper
- Active Resistor Network
 - Spatial and Temporal Dynamics
 - Three New Property Findings
- ReDAC with RC Filter
 - Conventional ReDAC with LPF
 - Proposed ReDAC with HPF
- Conclusion

ReDAC: Relaxation Digital-to-Analog Converter

Outline

From Politecnico di Torino, Italy

[5] P. S. Crovetti, et. al.,
"Relaxation Digital-to-Analogue onverter," Electronics Letters, 2 9.
[6] R. Rubino, et al.
"Design of Relaxation Digital-to-Analogue onverters f or IoT Applications in 4 nm MOS," APCCAS 2019.

- ReDAC with RC Filter
 - Conventional ReDAC with LPF

- Proposed ReDAC with HPF
- Conclusion

Configuration and Operation of Conventional (1) ^{32/43}

Configuration and Operation of Conventional (2)

Simulation Verification of Conventional (1)

parameter	value
R	1 kΩ
С	1.443 nF
Т	1 μs
V _{DD}	1 V

Simulation Verification of Conventional (2)

Analog output is proportional to digital input data N.

Analog output generates with only positive polarity.

Negative digital input data is not available.

- Objective of This Paper
- Active Resistor Network
 - Spatial and Temporal Dynamics
 - Three New Property Findings
- ReDAC with RC Filter
 - Conventional ReDAC with LPF
 - Proposed ReDAC with HPF
- Conclusion

Configuration and Operation of Proposal (1)

Configuration and Operation of Proposal (2)

Simulation Verification of Proposal (1)

Simulation Verification of Proposal (2)

Analog output is proportional to the digital input data N.

• Positive and negative polarity output can be generated.

Digital input data is in two's complement format.

- Objective of This Paper
- Active Resistor Network
 - Spatial and Temporal Dynamics
 - Three New Property Findngs
- ReDAC with RC Filter
 - Conventional ReDAC with LPF
 - Proposed ReDAC with HPF
- Conclusion

Conclusion

We have shown the following:

- Relaxation DAC with RC HPF produces positive and negative polarity output for digital input data in two's complement format.

RC linear networks still have challenges in circuit theory and application

References

Active Resistor Network Dynamics

- [1] M. Chiba, H. Kobayashi, et. al., "Spatial and Temporal
 - Dynamics of Non-Uniform Active Resistor Networks",
 - IEEE 16th ICSICT (Oct. 2022).
- [2] K. Otomo, H. Kobayashi, et. al., "Conjecture on Spatial-Temporal
- Response Relationship for Spatially Shift-Variant Networks with
- Positive and Negative Resistors", 6th ICTSS (Dec. 2022).

ReDAC with HPF

[3] L. Nengvang, H. Kobayashi, et. al., "Relaxation DAC with Positive and Negative Polarity Output using High-Pass Filter", IEICE Electronics Express (Feb. 2023).