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Objective of This Paper

To show research for RC linear circuit has not ended yet.

[RC Network Theory] 
Spatial and temporal dynamics of active resistor network. 

Active resistor network:  positive and negative resistors

[Application of RC Circuit]
Relaxation DAC with RC high-pass filter
for positive and negative polarity output
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Research Outline of Active Network Dynamics 

Our previous theorem:
Spatial and temporal stability conditions are equivalent
for uniform active resistor network

This paper:
Investigation of spatial and temporal dynamics 
for non-uniform active resistor network

Three new findings
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Retina Chip with Positive Resistor Network

High-speed analog image-smoothing processor

[1] C. A. Mead, Analog VLSI and Neural Systems, Addison Wesley, 1989

1D image case

Node voltages： Output image

Injected currents at nodes： Input image

g0 = 1/R0
g1 = 1/R1
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Spatial Impulse Response of Retina Chip

Cusped spatial impulse response

Node voltage Cusped Convolution Kernel
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Gaussian Chip with Active Resistor Network

[2] H. Kobayashi, J. L. White, A. A. Abidi, “An Active Resistor Network for Gaussian Filtering of Images'', 
IEEE Journal of Solid-State Circuits (May 1991)

g0 = 1/R0
g1 = 1/R1
g2 = 1/R2

R2 = − 4R1 < 0Negative resistor

Injected currents at nodes： Input image

Node voltages： Output image

High-speed analog image processor
1D image case
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Spatial Impulse Response of Gaussian Chip

Flat-top spatial impulse response

Node voltage
More desirable 
for image processing
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Negative Resistor with Standard CMOS

V+dV @ Node A >          V @ Node B                        

Current I =𝑑𝑉
𝑅2
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Uniform Resistor Network for Spatial Dynamics

Equal

Equal

Equal

● Shift invariant
● Spatial transfer function can be defined
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Temporal Dynamics with R, C

Capacitances are considered for temporal dynamics

g  g  g  g  g  g  g  g  g                             

g  g  g  g  g  g  g  g  
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Simulation Results: Spatial Temporal Stabilities

Temporally stableSpatially stable

𝑅0 = Τ1 𝑔0 = 200kΩ, Τ𝑅1 = 1 𝑔1 = 5kΩ, Τ𝑅2 = 1 𝑔2 = −20kΩ

Time

Voltage

Node

VoltageSpatial
impulse

response

Temporal
step

response
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Simulation Results: Spatial Temporal Instabilities

Temporally unstableSpatially unstable

𝑅0 = Τ1 𝑔0 = 200kΩ, Τ𝑅1 = 1 𝑔1 = 5kΩ, Τ𝑅2 = 1 𝑔2 = −17kΩ

Time

Voltage

Node

Voltage

Spatial
impulse

response

Temporal
step

response
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Circuit Network Theorem

For uniform network with positive and negative resistors,
spatial and temporal stability conditions are equivalent.

[3] T. Matsumoto, H. Kobayashi, Y. Togawa, 
“Spatial Versus Temporal Stability Issues in Image Processing Neuro  hips '', 
IEEE Trans. Neural Networks, (July 1992).

[4] H. Kobayashi, T. Matsumoto, J. Sanekata, 
“Two-Dimensional Spatio-Temporal Dynamics of Analog Image Processing Neural Networks'',
IEEE Trans. Neural Networks (Oct. 1995).

How about non-uniform network ?



/4318
Outline

• Objective of This Paper
• Active Resistor Network 

- Spatial and Temporal  Dynamics
- Three New Property Findings

• ReDAC with RC Filter
- Conventional ReDAC with LPF
- Proposed ReDAC with HPF

• Conclusion



/4319
Non-Uniform Resistor Network

Need NOT Equal

Need
NOT
Equal Need NOT Equal

● Shift variant
● Spatial transfer function CANNOT be defined

-3                           -1                          1                             3

-5               -4           -3              -2         -1              1               2           3                4         5

-5               -4           -3              -2         -1              0            1               2           3             4             5

-4                             -2                           0                             2                        4   
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Finding 1

If there is a node where the input current is injected and 
its node voltage as the spatial impulse response is negative,

the network is temporally unstable 

𝑅0 = 2kΩ
𝑅1 = 1kΩ

𝑅T = −2kΩ

Temporally unstableSpatial Impulse Response

Negative
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1st Nearest Connection (2)

R0A R0A R0A R0A R0A R0AR0BR0BR0BR0BR0B

1kΩ

−1kΩ

10μA

Negative Temporally Unstable

1kΩ
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1st Nearest Connection (3)

R0A R0A R0A R0A R0A R0AR0BR0BR0BR0BR0B

1kΩ

1kΩ

10μA

−1kΩ

Negative Temporally Unstable
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2nd Nearest Connection (1)

2kΩ

1kΩ

−1kΩ

1kΩ

10μA.

Negative Temporally Unstable
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2nd Nearest Connection (2)

−2kΩ

−1kΩ

2kΩ

0.5 kΩ

10μA

Negative Temporally Unstable
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3rd Nearest Connection 

R0a = 2kΩ, R0b = 3kΩ, R0c = −0.25k, R1 = 1kΩ, R3a = −4kΩ
R3b = −3k, R3c = −2k, R3d = −1kΩ, I = 10μA

Negative Temporally Unstable
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Finding 2

For all nodes,
“The input current is injected at each one node and 
its node voltage as the spatial impulse response is positive”,

Some networks can be temporally unstable.

We have found such an example by simulation
Theoretical analysis is left. 
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3rd Nearest Connection 

R0a = 2kΩ, R0b = 3kΩ, R0c= −0.25k, R1 = 1kΩ, R3a = −1k, R3b= −2k, R3c = −3k, R3d = −4kΩ, I = 10μA

For all nodes, “the input current is injected at a node and 
its node voltage as the spatial impulse response is positive”,

Temporally 
Unstable

Positive
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Finding 3

Temporal stability and instability can depend on 
capacitors (C) from nodes to ground.

R0a = −1 kΩ, R0b= 1 kΩ, R0c= 0.5 kΩ, R1a= −1 kΩ, R1b= 0.5 kΩ, I = 10 μA,

Temporally Unstable                           Unstable Stable

Proved with theory
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Our Three New Findings

For general non-uniform active resistor network dynamics,
three new properties have been found
with simulation and theoretical analysis.

Their rigorous proof has NOT been completed yet.
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From Politecnico di Torino, Italy
[5] P. S. Crovetti, et. al., 

“Relaxation Digital-to-Analogue  onverter ,” Electronics Letters, 2  9.
[6] R. Rubino, et al. 

“Design of Relaxation Digital-to-Analogue  onverters f or IoT Applications in 4 nm   MOS,”  
APCCAS 2019.



/4332
Configuration and Operation of Conventional (1)

R

C𝑉𝑖𝑛 𝑉𝐶

𝑉𝐷𝐷

𝑏4 𝑏3 𝑏2 𝑏1 𝑏0

MSB LSB

◼ Digital input bit stream  𝑏𝑛−1…𝑏0

RC LPF network
LSB-first

Digital Input code

N = ෍

𝑖=0

𝑛−1

𝑏𝑖2
𝑖

𝑉𝐶

𝑡T

𝑉𝑖𝑛

𝑉𝐷𝐷

𝑡T

1

Ex:    N=5 (𝑏4𝑏3𝑏2𝑏1𝑏0=00101)

Shift register

N = 1 ∙ 20 + 0 ∙ 21 + 1 ∙ 22 + 0 ∙ 23 + 0 ∙ 24 = 5 𝑇 = 𝑅𝐶 ∙ log 2Condition
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Configuration and Operation of Conventional (2)

R

C𝑉𝑖𝑛 𝑉𝐶

𝑉𝐷𝐷 𝑉𝐷𝐷

𝑏4 𝑏3 𝑏2 𝑏1 𝑏0

MSB LSB

Final capacitor voltage 
→ Conversion result

RC LPF
𝜏 = 𝑅𝐶

𝑉𝐶 𝑛𝑇 = 𝑉𝐷𝐷 1 − 𝑒−
𝑇
𝜏 ∙ ෍

𝑖=0

𝑛−1

𝑏𝑖𝑒
−
𝑛−𝑖−1 𝑇

𝜏

𝑒−
𝑇
𝜏 =

1

2
⇒ 𝑇 = 𝜏 ∙ log 2

Condition

𝑉𝐶 𝑛𝑇 =
𝑉𝐷𝐷
2𝑛

෍

𝑖=0

𝑛−1

𝑏𝑖2
𝑖 =

𝑁

2𝑛
∙ 𝑉𝐷𝐷

Output voltage proportional to N

Shift register

Ex:    N=5 (𝑏4𝑏3𝑏2𝑏1𝑏0=00101)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 1 2 3 4 5

V
in

, V
c 

[V
] Vin

Vc
(5/25) 𝑉𝐷𝐷

1 0 1 0 0

0       T      2T    3T    4T     5T 
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Simulation Verification of Conventional (1)

parameter value
𝑅 1 kΩ
𝐶 1.443 nF
𝑇 1 μs
𝑉𝐷𝐷 1 V

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 1 2 3 4 5

V
in

, V
c 

[V
]

Time [μs]

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 1 2 3 4 5

V
in

, V
c 

[V
]

Time [μs]

Vin
Vc

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 1 2 3 4 5

V
in

, V
c 

[V
]

Time [μs]

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 1 2 3 4 5

V
in

, V
c 

[V
]

Time [μs]

𝑏1𝑏0 𝑏2 𝑏3 𝑏4

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 1 2 3 4 5

V
in

, V
c 

[V
]

Time [µs]

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 1 2 3 4 5

V
in

, V
c 

[V
]

Time [μs]

𝑉𝐶 5𝑇
= 1 𝑉𝑂

2 𝑉𝑂

4 𝑉𝑂

8 𝑉𝑂

16 𝑉𝑂

5 𝑉𝑂

1 0          0        0        0                

0       1          0        0        0                

0        0          1 0        0

0        0         0         1   0                

0        0          0        0        1

1 0 1 0        0                

N=1 (00001)

N=2 (00010)

N=4 (00100)

N=8 (01000)

N=16 (10000)

N=5 (00101)
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Simulation Verification of Conventional (2)

0.0

0.2

0.4

0.6

0.8

1.0

0 4 8 12 16 20 24 28 32

An
al

og
 o

ut
pu

t V
c 

[V
]

Digital Input N

● Analog output is proportional to digital input data N.

● Analog output generates with only positive polarity.

Negative digital input data is not available.
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Configuration and Operation of Proposal (1)

R

C

𝑉𝑖𝑛 𝑉𝑅

𝑉𝐷𝐷 𝑉𝐷𝐷

𝑏4 𝑏3 𝑏2 𝑏1 𝑏0

MSB LSB

Digital input code

𝑁 = −𝑏𝑛−12
𝑛−1 +෍

𝑖=0

𝑛−2

𝑏𝑖2
𝑖

𝑉𝑖𝑛

𝑉𝐷𝐷

𝑡T

1

𝑉𝑅

𝑡T

Shift register ◼ Digital input bit stream  𝑏𝑛−1…𝑏0

RC HPF network
LSB-first

𝑇 = 𝑅𝐶 ∙ log 2Condition

Ex:    N=-11 (𝑏4𝑏3𝑏2𝑏1𝑏0=10101)

N = 1 ∙ 20 + 0 ∙ 21 + 1 ∙ 22 + 0 ∙ 23 − 1 ∙ 24 = −  

Two’s complement format
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Configuration and Operation of Proposal (2)

𝑏4 𝑏3 𝑏2 𝑏1 𝑏0

MSB LSB R

C

𝑉𝑖𝑛 𝑉𝑅

𝑉𝐷𝐷 𝑉𝐷𝐷

Shift register

𝑉𝑅 𝑛𝑇 = −𝑉𝐷𝐷 −𝑏𝑛−1𝑒
𝑛−1 𝑇
𝜏 +෍

𝑖=0

𝑛−2

𝑏𝑖𝑒
−
𝑛−𝑖−1 𝑇

𝜏

𝑉𝑅 𝑛𝑇 = −
𝑉𝐷𝐷
2𝑛

−𝑏𝑛−12
𝑛−1 +෍

𝑖=0

𝑛−2

𝑏𝑖2
𝑖

= −
𝑁

2𝑛
∙ 𝑉𝐷𝐷

Output Voltage proportional to N

Final resistor voltage 
→ Conversion result

𝑒−
𝑇
𝜏 =

1

2
⇒ 𝑇 = 𝜏 ∙ log 2

Condition

RC HPF
𝜏 = 𝑅𝐶Ex:    N=-11 (𝑏4𝑏3𝑏2𝑏1𝑏0=10101)

-1.0
-0.6
-0.2
0.2
0.6
1.0
1.4

0 1 2 3 4 5

V
in

, V
R

 [V
]

Vin VR

-(-11/25) 𝑉𝐷𝐷
= (11/25) 𝑉𝐷𝐷

0       T      2T    3T    4T     5T 

1 0 1 0 1
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Simulation Verification of Proposal (1)

-1.0
-0.6
-0.2
0.2
0.6
1.0
1.4

0 1 2 3 4 5

V
in

, V
R

 [V
]

Vin
VR

-1.0
-0.6
-0.2
0.2
0.6
1.0
1.4

0 1 2 3 4 5

V
in

, V
R

 [V
]

-1.0
-0.6
-0.2
0.2
0.6
1.0
1.4

0 1 2 3 4 5

Vi
n,

 V
R

 [V
]

Time [μs]

-1.0
-0.6
-0.2
0.2
0.6
1.0
1.4

0 1 2 3 4 5

V
in

, V
R

 [V
]

Time [µs]

-1.0
-0.6
-0.2
0.2
0.6
1.0
1.4

0 1 2 3 4 5

V
in

, V
R

 [V
]

Time [μs]

-1.0
-0.6
-0.2
0.2
0.6
1.0
1.4

0 1 2 3 4 5

V
in

, V
R

 [V
]

Time [µs]

◼ 𝑉𝑅 5𝑇 |𝑁=5 = 𝑉𝑅 5𝑇 |𝑁=1 + 𝑉𝑅 5𝑇 |𝑁=4

◼ 𝑉𝑅 5𝑇 |𝑁=−11 = 𝑉𝑅 5𝑇 |𝑁=1 + 𝑉𝑅 5𝑇 |𝑁=4 + 𝑉𝑅 5𝑇 |𝑁=−16

𝑉𝐶 5𝑇
= −𝑉𝑂

𝑉𝐶 5𝑇
= −2𝑉𝑂

𝑉𝐶 5𝑇
= −4𝑉𝑂

𝑉𝐶 5𝑇
= − −16 𝑉𝑂
= 16 𝑉𝑂

𝑉𝐶 5𝑇
= −5𝑉𝑂

𝑉𝐶 5𝑇
= −(−11)𝑉𝑂
= 11𝑉𝑂

1 0          0        0        0                

0       1          0        0        0                

0         0         1 0         0                

0        0          0        0        1

1 0 1 0        0                

1 0 1 0  1

N=1 (00001)

N=4 (00100)

N=2 (00010) N=5 (00101)

N= − 16 (10000)

N= − 11 (10101)
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Simulation Verification of Proposal (2)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-16 -12 -8 -4 0 4 8 12 16

An
al

og
 o

ut
pu

t V
R
[V

]

Digital input N

● Analog output is proportional to the digital input data N.

● Positive and negative polarity output can be generated.

● Digital input data is in two’s complement format.
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Conclusion

We have shown the following:
● Spatial and temporal dynamics of active resistor network

have close relationships        Theoretical analysis is left.

● Relaxation DAC with RC HPF produces 
positive and negative polarity output 
for digital input data in two’s complement format.

RC linear networks still have challenges
in circuit theory and application
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