June 26, 2015

20th International Mixed-Signal Testing Workshop

Université Pierre et Marie Curie Paris, France

Timing Measurement BOST With Multi-Bit Delta-Sigma TDC

T. Chujo, D. Hirabayashi, T. Arafune S. Shibuya, S. Sasaki, <u>H. Kobayashi</u> M. Tsuji , R. Shiota, M. Watanabe, N. Dobashi S. Umeda, H. Nakamura, K. Sato

Gunma University, STARC, Hikari Science

G. Robert 教授(McGill大学)に認められる

Gunma University Kobayashi-Lab

Contents

- Research Objective
- Timing Measurement with $\Delta\Sigma$ TDC
- Multi-bit ΔΣ TDC
- Analog FPGA Implementation
- Conclusion

Contents

<u>Research Objective</u>

- Timing Measurement with $\Delta\Sigma$ TDC
- Multi-bit ΔΣ TDC
- Analog FPGA Implementation
- Conclusion

Research Objective

 Testing the timing between two repetitive digital signals
Ex. Data and clock in Double Data Rate memory

• Good accuracy

Implement BOST with small circuitry

BOST: Built-Out Self-Test

Our Work

Focus on Multi-bit ΔΣ Time-to-Digital Converter (TDC)

Repetitive digital signals

- Simple circuit
- Fine time resolution
- Testing time

Single-bit $\Sigma \Delta$ TDCLongMulti-bit $\Sigma \Delta$ TDCShort

• Linearity

Single-bit $\Sigma\Delta$ TDC Good

Multi-bit $\Sigma \Delta$ TDC

Bad due to delay elements mismatches

DWA algorithm, BOST (FPGA) verification

Contents

Research Objective

- Timing Measurement with $\Delta\Sigma$ TDC
- Multi-bit ΔΣ TDC
- Analog FPGA Implementation
- Conclusion

Principle of $\Delta\Sigma TDC$

ΔΣΤDC Configuration

9

Single-Bit ΔΣ TDC

Delay line with 1bit digital input is inherently linear.

Operation of Single-Bit ΔΣ TDC

11

In case Dout =1

Operation of Single-Bit $\Delta\Sigma$ TDC ¹²

In case Dout =0

Λ

Contents

Research Objective

• Timing Measurement with ΔΣ TDC

• Multi-bit $\Delta \Sigma$ TDC

Analog FPGA Implementation

Conclusion

- 3-bit : 7 comparators and delays
- Fine time resolution with a given measurement time

Shorter measurement time with a given time resolution

• TDC non-linearity due to mismatches among delay cells.

- 3-bit : 2³-1 =7 comp
- Fine time resolution

Shorter measureme

TDC non-linearity dependence

- 3-bit : $2^{3}-1 = 7$ comparators and delays
- Fine time resolution with a given measurement time

Shorter measurement time with a given time resolution

• TDC non-linearity due to mismatches among delay cells

- 3-bit : $2^{3}-1 = 7$ comparators and delays
- Fine time resolution with a given measurement time

Shorter measurement time with a given time resolution

• TDC non-linearity due to mismatches among delay cells

Time Resolution Comparison

Simulation conditions

	1-bit ΔΣ TDC	3-bit ΔΣ TDC
Rising timing edge difference (T)	-0.9 \sim 0.9 ns (Resolution : 0.04 ns)	-0.9 \sim 0.9 ns (Resolution : 0.04 ns)
Delay time (τ)	1 ns	0.145 ns
The number of digital outputs	2	2

18

Measurement Time Comparison¹⁹

✓Multi-bit takes short measurement time for a given time resolution

DWA (Data Weighted Averaging) 20

- Flash ADC outputs
- shuffled by DWA logic,

fed into MUXs as select signals

Delay mismatch effects

moved to high-frequency (noise-shaping)

Noise-Shaping

Delay mismatch $\Delta \tau$ is 'first-order noise-shaped.

DWA & Noise Shaping

- Delay τ : integration & differentiation
- Delay mismatch $\Delta \tau$: differentiation

DWA Operation

Pass a baton in relay race !

No DWA Digital input 1 at time 1 24

No DWA Digital input 2 at time 2 25

No DWA Digital input 1 at time 3 26

DWA Digital input 1 at time 1 27

DWA Digital input 2 at time 2

28

DWA Digital input 1 at time 3 29

DWA Effectiveness

Simulation of $\Delta\Sigma$ TDC with DWA ³¹

✓ Reduce the effect of delay mismatches

 $\Sigma\Delta$ TDC linearity is improved

DWA & Mismatches

Contents

- Research Objective
- Timing Measurement with ΔΣ TDC
- Multi-bit ΔΣ TDC
- Analog FPGA Implementation
- Conclusion

Analog FPGA Implementation

Programmable System-on-Chip(PSoC) Cypress Semiconductor

Analog-Digital Mixed-Signal FPGA

Advantages of PSoC Implementation

- Low cost
- Short design time
- On-chip debug/design correction
- Easy for chip testing

Photo of ΔΣΤDC PSoC Implementation 35

Designed 3-bit ΔΣΤDC

36

• Delay τ 's are implemented with external R, C.

R value can be chosen with external switch.

Phase Detector

Phase Detector and Integrator

3bit Flash ADC Without Encoder

Input to DWA logic

MUX selection signal for delay selection

DWA Logic Circuit

Implemented with small digital circuitry

Measured Result (Case 1)

10,000 TDC output data are measured.

T [ns]

Measured Result (Case 2)

output data are measured.

Contents

- Research Objective
- Timing Measurement with $\Delta\Sigma$ TDC
- Multi-bit ΔΣ TDC
- Analog FPGA Implementation
- <u>Conclusion</u>

Circuit Performance Comparison 44

	Flash TDC	1-bit ΔΣ TDC	Multi-Bit ΔΣ TDC (without correction)	Multi-Bit ΔΣ TDC (with correction)
Circuit size	×	Ô	Ο	0
Resolution	×	Ô	Ô	Ô
Linearity	Δ	Ô	×	0
Testing time	Ô	×	0	0

Conclusion

- We propose to use ΔΣ TDC for digital signal timing measurement
 - Multi-bit ΔΣ TDC
 - Short measurement time
 - Fine time resolution
 - Non-linearity due to mismatches among delay cells
 - DWA algorithm for linearity improvement
 - Analog FPGA verification

Low cost, high quality digital timing test can be realized using BOST.

46

Kobayashi Laboratory

Time is GOLD !!

 $\Delta\Sigma TDC$ is a key.

References

Flash-type TDC (first paper)

[1] Y. Arai, T. Baba, "A CMOS Time to Digital Converter VLSI for High-Energy Physics", IEEE Symposium on VLSI Circuits (1988).

<u>ΔΣΤD (first paper)</u>

[2] B. Young, K. Sunwoo A. Elshazly, P. K. Hanumolu, "A 2.4ps Resolution 2.1mW Second-order Noise-shaped Time-to-Digital Converter with 3.2ns Range in 1MHz Bandwidth," IEEE Custom Integrated Circuits, San Jose (Sept. 2010)

Multi-bit ΔΣΤDC Linearity Improvement

[3] S. Uemori, M. Ishii, H. Kobayashi, et. al., "Multi-bit Sigma-Delta TDC Architecture with Improved Linearity," Journal of Electronic Testing : Theory and Applications, Springer, vol. 29, no. 6, pp.879-892 (Dec. 2013).

<u>Application of $\Delta\Sigma$ TDC to Phase Measurement</u>

[4] D. Hirabayashi, Y. Osawa, N. Harigai, H. Kobayashi et. al., "Phase Noise Measurement with Sigma-Delta TDC", IEEE International Test Conference, Poster Session, Anaheim, CA (Sept. 2013).