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|. Introduction

Demand of power supply circuits Low ripple (in steady state) and fast response for large load changes
Low ripple and fast response are trade-off in control systems.

e.g., large L: low ripple, small L: fast response

We proposed to use variable inductors and capacitors
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III Varlable Inductor and Capacitor with MEMS Technolog

Specification

16 turns

Line width 16 [ ]
Line space 45[1 ]
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Fig.11 Chip photo of spiral inductor.
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Mutual inductance changes
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Fig.9 Proposed structure of variable inductor. Fig.10 Simulation result of variable inductor (vertical move). Feasible in future on-chip power supply systems.

N
=
)

Mutual Inductance [nH]

=
>
S




