フォールト・トレラント・コンピューテング (Fault Tolerant Computing: FTC)研究会 長崎 2008年1月12日

パイプラインADC デジタル自己校正アルゴリズム

群馬大学大学院工学研究科 電気電子工学専攻 情報通信システム第二研究室

〇高橋 洋介, 趙 楠, 傘 昊, 三田 大介, 八木 拓哉, 小林 春夫

発表内容

■研究目的 パイプラインADCの構成と動作 ■問題提起 デジタル自己校正 シミュレーション ■ まとめ

発表内容

研究背景

● パイプライン CMOS ADCの位置づけ 高分解能、中高速で 産業界で広く用いられる。

CMOSの微細化によって 製造ばらつきによる精度劣化

高ゲインオペアンプ製造困難

高精度化が難しい

製造ばらつきによる誤差を補正 低消費電力化に貢献

研究目的

LSIでのアナログ的な特性劣化

自己校正で『良』にする技術の確立

研究目標

パイプラインADCの不良

↓ 従来のパイプラインADC自己校正アルゴリズム ↓ 設計している特定のアークテクチャに工夫して適用

効果をシミュレーションにて検証する

デジタル誤差補正とデジタル自己校正

デジタル自己校正

回路の非理想要因をデジタル値として測定 メモリに記憶 その値をもとに通常動作のときに補正

フォアグランドとバックグランド 自己校正

フォアグランド・自己校正 通常動作をストップして 自己校正のための時間をもつ

バックグランド・自己校正

通常動作はストップしない。

自己校正はユーザからは全く見えない。

最終目標

発表内容

パイプラインADCの構成と動作

パイプラインADCの構成

パイプラインADCの動作

10進数,2段構成の場合

アナログ入力Vinは 0.0≦Vin<100.0

ADC1	アナログ入力Vin	デジタル出力 D1
	0.0≦Vin<10.0	0
ADUZ	10.0≦Vin<20.0	1
	20.0≦Vin<30.0	2
	90.0≦Vin<100.0	9

パイプラインADC動作例

群馬大学 コバ研

パイプラインADC動作波形

群馬大学 コバ研

パイプラインADC動作波形

 $Dout=3 \times 10+5=35$

発表内容

■ 研究目的 パイプラインADCの構成と動作 ■問題提起 デジタル自己校正 シミュレーション ■ まとめ

問題提起

ADC1の非線形性の影響 後段ADCの精度 DACの非線形性の影響 段間アンプのゲイン誤差の影響

アナログ入力 Vin-Vout Vin,2 Vin Vin ADC1 DAC1 Vout D1

ADC1の非線形性の影響

Gunma University KOBA Lab.

Offset

Vin

ADC1の非線形性の影響

ADC1の非線形性の影響

ADC1の非線形性の影響

問題提起

全体の出力 Dout = $D1 \times 10^{N-1} + D2 \times 10^{N-2} + \dots + D_N$

問題提起

ADC1の非線形性の影響 後段ADCの影響

DACの非線形性の影響

DACの非線形性の影響

DACの非線形性の影響

問題提起

ADC1の非線形性の影響 後段ADCの影響 DACの非線形性の影響

■ 段間アンプのゲイン誤差の影響

段間アンプのゲイン誤差の影響

ADC全体の誤差を生じさせる

発表内容

4bit MDAC(マルチプライDAC) 上位変換回路

Gunma University KOBA Lab.

デジタル自己校正技術

計測はパイプラインADC(後段10bit ADC)自体を用いる

高さの測定

残差信号の高さを後段10bit ADCを用いてデジタル的測定

 測定法として以下の2つの方法を考える (MDAC制御信号Dinを変化させる)

高さの測定

■ 残差信号の高さを後段10bit ADCを用いてデジタル的測定

 測定法として以下の2つの方法を考える (MDAC制御信号Dinを変化させる)

測定法①

- ・ MDAC中の各容量を階段のように変化させ測定
- ・入力電圧を<mark>変化</mark>

測定法②
MDAC中の各容量を1つ1つ個別に測定
入力電圧は一定

測定法(2)

制御信号Din→容量値を個別に測定するように制御

入力電圧一定で測定可能→アーキテクチャ容易

$$H2 = S2 - S2' \quad V2 - V2' = \frac{2C_{13}}{Cf_1 + Cf_2} Vref$$
$$H3 = S3 - S3' \quad V3 - V3' = \frac{2C_{12}}{Cf_1 + Cf_2} Vref$$

D1outに応じて補正値を加算

デジタル補正法

D1outに応じて補正値を加算

デジタル補正法

デジタル補正法

自己校正テーブル

4bit output	補正値
0000	0
0001	H1
0010	H1+H2
:	•
1110	$\sum_{i=1}^{14} Hi$

D1outに応じて補正値を加算

発表内容

シミュレーション

MATLABを活用しデジタル校正の効果を検証する

段間アンプのゲイン誤差がある場合(シミュレーション)

段間アンプのゲイン誤差がある場合(シミュレーション)

Power spectrum (測定法1) 単一sin波入力の出力Power Spectrum SNR=85.9[dB],ENOB=13.9[bits] -20 THD=-103[dB] Power [dB] -40 (自己校正なし) -60 Power spectrum SNR=73.3[dB],ENOB=11.2[bits] -100 THD=-71.6 [dB] -20 -120 Power [dB] -140 x 10² Frequency [Hz] -100 Power spectrum (測定法2) -120 0 SNR=85.9[dB],ENOB=13.9[bits] -140 0.2 -20 THD=-103[dB] Power [dB] × 10² Frequency [Hz] -60 -100

Frequency [Hz]

-120

-140

1 11 1 1 1 1 1 1 1 1 1 1

段間アンプのゲイン誤差がある場合(シミュレーション)

	自己校正なし	測定法1	測定法2
SNR [dB]	73.2	85.9	85.9
ENOB [bits]	11.2	13.9	13.9
THD [dB]	-71.6	-103	-103
DNL [in LSB]	1.0	0.15	0.15
INL [in LSB]	4.4	0.12	0.12

測定法1と2とでは同様の結果が得られた

SNR 12.7 [dB]

ENOB 2.7 [bits]

の改善が見られた。

段間アンプのゲイン誤差についてこの自己校正の有効性 を確認できた。

<u>段間</u>アンプのゲイン誤差がある場合(シミュレーション)

DACの非線形性がある場合(シミュレーション)

 $\sigma = 0.067$ のばらつきを持たせた

DACの非線形性がある場合(シミュレーション)

DACの非線形性がある場合(シミュレーション)

	自己校正なし	測定法1	測定法2
SNR [dB]	79.4	83.9	85.1
ENOB [bits]	12.9	13.4	13.5
THD [dB]	-81.6	-89.4	-88.1
DNL [in LSB]	1.0	0.9	0.43
INL [in LSB]	1.5	0.52	0.76

測定法1と2とでは結果が異なった 自己校正なしの状態から

- 日に校正なしの状態から (測字注1) ENOP 05 「M
- (測定法1) ENOB 0.5 [bits]
- (測定法2) ENOB 0.6 [bits]

の改善が見られた。

DACの非線形性についてこの自己校正の有効性 を確認できた。

DNL,INL

(自己校正なし)

	校正なし	測定法①	測定法②
DNL+ [in LSB]	0.82	0.85	0.40
DNL- [in LSB]	-1.0	-0.90	-0.43
INL+ [in LSB]	1.6	0.52	0.50
INL- [in LSB]	-1.0	-0.5	-0.76

発表内容

まとめ

アナログ的なフォールトトレラントのために 自己校正手法を検討した。

■ 従来のパイプラインADCでの自己校正アルゴリズム

「容量相対誤差測定法を2種類考案 MATLABでのパイプラインADCに適用」

・MATLABシミュレーションにより有効性を確認

今後の課題

▶ 最終目的 バックグランド自己校正