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Abstract

We have designed, fabricated and measured a second-order multibit switched-capacitor complex bandpass ΔΣAD modulator
to evaluate our new algorithms and architecture. We propose a new structure of a complex bandpass filter in the forward path with
I, Q dynamic matching, that is equivalent to the conventional one but can be divided into two separate parts. As a result, the ΔΣ
modulator, which employs our proposed complex filter can also be divided into two separate parts, and there are no signal lines
crossing between the upper and lower paths formed by complex filters and feedback DACs. Therefore, the layout design of the
modulator can be simplified. The two sets of signal paths and circuits in the modulator are changed between I and Q while CLK
is changed between high and low by adding multiplexers. Symmetric circuits are used for I and Q paths at a certain period of
time, and they are switched by multiplexers to those used for Q and I paths at another period of time. In this manner, the effect of
mismatches between I and Q paths is reduced. Two nine-level quantizers and four DACs are used in the modulator for low-power
implementations and higher signal-to-noise-and-distortion (SNDR), but the nonlinearities of DACs are not noise-shaped and the
SNDR of the ΔΣAD modulator degrades. We have also employed a new complex bandpass data-weighted averaging (DWA)
algorithm to suppress nonlinearity effects of multibit DACs in complex form to achieve high accuracy; it can be realized by just
adding simple digital circuitry. To evaluate these algorithms and architecture, we have implemented a modulator using 0.18µm
CMOS technology for operation at 2.8V power supply; it achieves a measured peak SNDR of 64.5dB at 20MS/s with a signal
bandwidth of 78kHz while dissipating 28.4mW and occupying a chip area of 1.82mm2. These experimental results demonstrate
the effectiveness of the above two algorithms, and the algorithms may be extended to other complex bandpass ΔΣAD modulators
for application to low-IF receivers in wireless communication systems.

I. INTRODUCTION

In the RF receiver of communication systems, low-IF receiver architecture is frequently used so that more receiver functions,
such as multi standard and automatic gain control, can be moved to the digital part to provide more programmability. In
conventional low-IF receiver architectures, two real (one input and one output) ΔΣAD modulators are used for in-phase (I)
and quadrature (Q) paths. Its disadvantage is that not only input signals but also image signals are converted by ADCs. On
the other hand, a complex bandpass ΔΣAD modulator can provide superior performance to a pair of real bandpass ΔΣAD
modulators of the same order. It processes just input I and Q signals, not image signals, and AD conversion can be realized
with low power dissipation. Thus, they are desirable for such low-IF receiver applications[1]–[5].

The use of a low-order multibit ΔΣAD modulator makes higher resolution possible with a low oversampling ratio (OSR), and
the stability problem is alleviated. It is attractive for low-power implementations because it alleviates the slew-rate requirements
of operational amplifiers with a high dynamic range in the modulator. However, multibit DACs cannot be made perfectly linear
and their nonlinearity in the feedback paths are equivalent to errors added directly to the input signals; hence, they may degrade
the SNDR of the ΔΣAD modulator. Then we developed a data-weighted averaging (DWA) algorithm for complex bandpass
modulators [6], [7], which is implemented by just adding simple digital circuitry to suppress nonlinearity effects of multibit
DACs in a complex form.

The performance of the complex bandpass ΔΣAD modulator is degraded by mismatches between I and Q paths, which
cause both signal and quantization noise in the mirror image band and aliasing in the design signal band, thereby decreasing
the SNDR of the complex modulator.

On the basis of the above consideration, we proposed new algorithms and a new architecture. We propose a new switched-
capacitor topology architecture, that is suitable for complex bandpass ΔΣAD modulators and compensates for mismatches
between I and Q paths. The new architecture reduces the amount of mirror image band quantization noise aliased into the signal
band. Moreover, this technique can be extended to multibit modulators suitable for complex bandpass DWA algorithm[8], [9].
Furthermore, in the realization of complex ΔΣAD modulators, their layout design becomes complicated because of signal lines
made to cross by complex filters and feedback from DACs for I and Q paths in the modulator, and this increases the required
chip area. We propose a new structure for a complex bandpass ΔΣAD modulator, which has a symmetrical configuration
that can be divided into two separate paths without crossing signal lines between the upper and lower circuit parts; thus, the
required chip area is reduced and its layout design can be simplified.

In this paper, we present the chip implementation of a complex bandpass ΔΣAD modulator with switched-capacitor circuits,
in order to evaluate the effectiveness of the above-mentioned two algorithms using a real chip.

II. COMPLEX BANDPASS ΔΣAD MODULATOR ARCHITECTURE

A complex bandpass ΔΣAD modulator gains its advantage by implementing the poles and zeros of its loop filter without
their conjugates, which are leaked in the image band for a complex single-side band signal. Fig.1 shows a simplified block
diagram of the proposed complex bandpass ΔΣAD modulator (whose topology is derived from modifying that of a real
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Fig. 1. Block diagram of the complex bandpass ΔΣAD modulator.
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Fig. 2. Conventional complex bandpass ΔΣAD modulator.

lowpass ΔΣAD modulator in [10] by replacing z−1 with jz−1); it is a second-order structure with two discrete-time complex
integrators (or complex bandpass filters) and two nine-level quantizers surrounded by two feedback loops. The input and output
of the complex bandpass ΔΣAD modulator can be expressed as

Y (z) = 0.5z−2X(z) + (z − j)2z−2E(z). (1)

Then the signal transfer function (STF) and noise transfer function (NTF) of the complex modulator can be given by

STF (z) = 0.5z−2 (2)
NTF (z) = (z − j)2z−2. (3)

Here, the passband center of the modulator is at fs/4 (fs is the sampling frequency of the modulator). Complex poles of the
filter (z = j) can be implemented either with real integrators [4], or with a cascade of unit delay-cell architecture [13] (Fig.2).
In our modulator design, we choose the delay-cell architecture since it operates fast and has simple coefficient values. DWA
logic circuits are used to realize our proposed complex DWA algorithm, which will be described in section IV.

III. NEW STRUCTURE OF COMPLEX BANDPASS FILTER

Fig.2 shows a conventional structure of a second-order complex bandpass ΔΣAD modulator, which is composed of a second-
order complex bandpass filter, two ADCs and four DACs. The modulator has I and Q signal crossing lines inside as shown in
Fig.2; it has not only signal crossings between the I and Q paths of the complex filter, but also signal crossings between the
feedback paths through two DACs to the second stage of the complex filter in I and Q paths.

Fig.3(a) shows a basic complex bandpass filter in the modulator (Fig.2) in the case of c1I = c1Q = 1, while Fig.3(b) shows
its proposed equivalent implementation, where four multiplexers (MUXs) are added and their select signal (SEL) toggles at
half the rate of CLK in the z−1 block, after which they are synchronized. The proposed complex filter is divided into two
separate parts without any crossing of signal lines.

The proposed complex filter operates with two states; in state 1 (in Fig.3(c)), the upper part of the circuit is used for the I
path, while the lower part is for the Q path. In state 2 (in Fig.3(d)), the upper part of the circuit is used for the Q path, while
the lower part is for the I path. In our proposed configuration, the input I and Q signals are alternated between the upper and
lower parts of the complex filter by the SEL signal, so that it is equivalent to the conventional configuration when the circuits
in both configurations are ideal with the same transfer function given by

H(z) =
1

z − j
. (4)

Fig.4 shows the complex bandpass ΔΣAD modulator with two proposed complex filters. We have eliminated two MUXs
from the back end of the first-stage filter and the front end of the second-stage filter, so that there are no signal crossing lines
from DACs at the second-stage filter. We have also added MUXs to change the sign for inputs of DAC3 and DAC4 to keep
the signal flow the same as that of the conventional modulator. As a result, only two MUXs are used to change the I and Q
signals at the inputs and outputs of the modulator. The complex filter in the modulator can be divided into two separate parts
without signal line crossing between the upper and lower paths, and its layout design can be simplified. Furthermore, the two
sets of signal paths and circuits in the modulator are changed between I and Q when CLK is changed. Symmetric circuits are
used for I and Q paths at a certain period of time, and they are switched by multiplexers to those used for Q and I paths at
another period of time. Therefore, the effect of mismatches between I and Q paths is reduced by dynamic matching.
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Fig. 3. (a) Basic complex bandpass filter. (b) Proposed equivalent im-
plementation of a complex bandpass filter. (c) Operation of the proposed
complex bandpass filter (state 1). (d) Operation of the proposed complex
bandpass filter (state 2).
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Fig. 4. Complex bandpass ΔΣAD modulator with proposed complex filter.

TABLE I
PARAMETERS FOR MISMATCHES BETWEEN I AND Q PATHS.

a1I=1×(1-0.03) a1Q=1×(1+0.03)
c1I=3×(1+0.014) c1Q=3×(1-0.03)
dI=1/3×(1-0.03) dQ=1/3×(1+0.02)
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Fig. 5. Comparison of SNDRs of modulators with ideal DACs in three
cases (parameters are those in Table 1).

We have conducted MATLAB simulations to evaluate the effectiveness of the proposed architecture. Second-order complex
bandpass modulators with internal ADCs/DACs of 9-level resolution (in Fig.2 and 4) were used for the simulation with the
following three cases:

1) An ideal modulator (in Figs.2 or 4) without mismatches and nonlinearities.
2) A modulator in Fig.2 with I and Q path mismatches whose parameters are shown in Table I. Since the effect of mismatches

in the second-stage filter is smaller, we form mismatches only for the first-stage filter in our simulation.
3) A modulator that employs the proposed architecture (in Fig.4) and whose mismatches and nonlinearities are the same as

those in case 2.
Fig.5 shows the simulation result comparison for the SNDRs of the modulators in these three cases. In case 1, the SNDR of
the ADC increases as OSR increases. However, in case 2 (where mismatch parameters between I and Q paths are shown in
Table I), SNDR saturates as OSR increases. On the other hand, in case 3, SNDR improves because the mismatch effects are
taken out of the signal band by dynamic matching.

IV. COMPLEX BANDPASS DWA ALGORITHM

In ΔΣAD modulators, oversampling and noise shaping techniques are used to achieve high accuracy. When a single-bit
modulator (i.e., internal ADC and DAC are 1-bit) is used to achieve a high SNDR, a higher OSR is needed, which demands a
higher sampling rate, and/or a high-order filter inside a modulator (as well as a high-order digital filter following the ΔΣAD
modulator) is required, which may cause modulator stability problems. On the other hand, when multibit ADCs/DACs are used
inside the modulator, it can obtain a high SNDR with a low-order loop filter and improve the stability problem. Smaller steps
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of the quantizer result in a lower quantization error, and relax the required performance for opamps with a larger overload
level.

A multibit DAC cannot be made perfectly linear, while a 1-bit DAC is inherently linear. Multibit DAC nonlinearity is
equivalent to errors added directly to the input signal - it is not reduced by noise shaping, and hence they may degrade the
SNDR of the ΔΣADC. In our implementation, multibit ADCs/DACs are used. Each DAC in our modulator has a nine-level
resolution with the segmented switched-capacitor architecture. Nonlinearities of the DAC due to mismatches of capacitors
introduce errors in the feedback loop and appear directly at output; this results in an almost flat power spectrum in the entire
band, and the SNDR of the modulator degrades.

We proposed a new noise shaping algorithm to reduce the effects of nonlinearities in multibit DACs of complex bandpass
ΔΣAD modulators. Fig.6 shows our proposed architecture for complex bandpass noise shaping of DAC nonlinearities. It
consists of a digital complex bandpass filter at the front end, two DACs, and an analog complex band elimination filter at
the back end. The transfer function of the digital complex bandpass filter at the front end is the same as Eq.(4), whereas the
transfer function of the analog complex band elimination filter at the back end is given by

H(z) = 1 − jz−1. (5)

Therefore, the nonlinearity errors of the two DACs e1 + je2 can be noise-shaped in a complex form at fs/4, the notch of
Eq.(5). In practice, however, this structure cannot be realized because the input signals may be infinite (out of DAC input
range). Thus, the equivalent implementation called the complex DWA algorithm is proposed to realize the architecture of DACs
shown in Fig.6.

Our implementation uses only a digital filter at the front end of 2-channel DACs and does not require an analog filter at
the back end. Element selection logic circuits (DWA1 and DWA2) are added between the two ADC outputs and DAC inputs
to select the DAC unit elements in a rotational manner [7] as shown in Fig.7. For the I-channel DAC output I4, we apply a
highpass DWA algorithm [11] with internal interaction between I and Q modulator outputs. For the Q-channel DAC output Q4,
we apply a lowpass DWA algorithm [12] with internal interaction between I and Q modulator outputs. DAC1 and DAC2 are
used alternately for I and Q-channels; hence, mismatch effects between two DACs e1 + je2 are first-order complex bandpass
noise-shaped at fs/4. Our algorithm can be implemented using simple circuitry; analog and digital multiplexers, barrel shifters
and adders/subtractors.

V. CIRCUIT IMPLEMENTATION

Fig.8 shows the entire proposed complex bandpass ΔΣAD modulator. We see that the proposed second-order complex
bandpass filter, which shares several MUXs, is used so that the proposed modulator has no crossing signal lines for either the
forward paths of the z−1 block or the feedback paths from DACs. Hence, the proposed modulator can be completely divided
into two separate parts and its layout design can be greatly simplified. Then its internal signal lines can be shorter, which leads
to a smaller chip area.

For the proposed architecture, we note that MUXs can be easily realized using MOS switches. We add MUXs that alternate
the polarity of the feedback signals between +1 and –1 at every sampling time to the feedback paths of filters and DACs. This
maintains the polarity of internal complex signals so that they are processed as a complex signal form [14]. In fact, we can
realize this by simply chopping the two differential outputs at every sampling time.

ninja
182



Z
-1

Z
-1

2

Qin

Qout
-

2
2/3

Iin Iout
3/2 +

+Z
-1

Z
-1

1/3 +

+1/3 3/2

ADC1

ADC2

DAC3

DAC2

DAC1

DAC4

M
U
X -1

M
U
X

-1

-1M
U
X

-1M
U
X-1

M
U
X

-1

M
U
XM

U
X

M
U
X

N1 N2

M1 M2

-

SEL

SEL

SEL

SEL

SEL
SEL

DWA2

DWA1

2/3

Fig. 8. Architecture of our complex bandpass ΔΣAD modulator.

SC Filter

SC Filter

CLK

DAC

DAC DAC

DAC

ADC

ADC

DWA1

DWA2

Fig. 9. Chip photopragh.

The proposed modulator was designed with fully differential switched capacitor circuits. z−1 block in the modulator realized
by using a switched-capacitor delay cell [13]. Gate-boosted NMOS switches and dummy switches are used at the input sampling
parts to cancel the effect of charge injection and clock feedthrough, while the rest of the elements are CMOS switches. ck1
and ck2 are nonoverlapping clocks to minimize the charge injection caused by sampling switches. Latched comparators with
input offset storage are used in the flash-type nine-level ADCs, where offset cancellation is applied to both the preamplifier
and the latch.

VI. EXPERIMENTAL RESULTS

The proposed complex bandpass ΔΣAD modulator was fabricated using 1P6M 0.18µm CMOS technology without any
option for precision capacitors and low threshold voltages. Fig.9 shows its chip microphotograph; the core size is 1.4 × 1.3
mm2. The capacitors were realized using multiple unit-capacitor cells for accurate ratio matching of coefficients. Unit-capacitor
cells were realized using the MIM structure for high capacitance density in a small chip area.

Fig.10 shows a comparison of the output power spectrum results of the modulator for zero input between ON and OFF
states of DWA logic. We see that while DWA logic is in the ON state, the noise floor at the band of interest is about 3dB
lower than that when DWA logic is in the OFF state; this validates the effectiveness of the proposed algorithm.

Fig.11 shows the measured output power spectrum for a 4.92MHz sinusoidal input, where the sampling frequency of CLK
was 20MHz, and the reference voltages of the modulator were fixed at Vref+ = 1.9V and Vref− = 0.9V. The degree of the
mirror image signal suppression in the modulator was evaluated by demodulating the complex IF signal down to the baseband
with quadrature carriers in the digital domain and performing an FFT on the resulting complex-valued signal. The spectrum of
the demodulated, complex-valued baseband signal is shown in Fig.12 which just shifts the center of the signal band from fs/4
to DC in the frequency domain; the scale of the frequency axis is expanded around DC and the value of the power spectrum
is the same as that in Fig.11. It is observed that the image signal is suppressed by 46dB with respect to the desired signal.
Fig.13 shows SNDR vs OSR; the peak SNDR is 64.5dB. Clocked at 20MHz, the modulator consumes 28.4mW at a power
supply voltage of 2.8V.

VII. CONCLUSION

We have designed, fabricated and tested a second-order multibit switched-capacitor complex bandpass ΔΣAD modulator to
demonstrate the effectiveness of two new algorithms:

1) A complex bandpass filter with I, Q dynamic matching to reduce the effect of mismatch between I and Q paths. The
complex filter in the modulator can be divided into two separate parts without requiring sensitive signal lines of the
upper and lower paths to cross.

2) A new complex bandpass DWA algorithm is implemented to suppress nonlinearity effects of multibit DACs in complex
form.

The effectiveness of the proposed architecture and circuit technique has been demonstrated by measured results.
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