Explicit Analysis of Channel Mismatch Effects in Time-Interleaved ADC Systems

N.Kurosawa, K.Maruyama, H.Kobayashi, H.Sugawara and K.Kobayashiy Gunma University, Japan yTeratec Corp. Japan

1. 研究の目的

2. インターリーブADCの原理と問題点

3. ミスマッチが独立して存在する場合の影響

4. ミスマッチが同時に存在する場合の影響

5. 帯域ミスマッチの影響

6. まとめ

1.研究の目的

インターリーブ・アーキテクチャを用いて 最高速のADCを実現する場合の、 システム上の問題の理論解析を行う。

2.インターリーブADCの原理と問題点

高速・高精度ADCの構成

- ² 高速ADCの構成
 - ± 大部分の回路が比較的低い周波数のクロックで動作
 - ± 周波数の高い信号の発生が不要
 - ± 周波数の高い信号が不要
 - ± タイミングの問題が少ない(例:タイミングスキュー)
- ² 高精度ADCの構成
 - + 高精度回路が不要
 - ± 大きなプロセス変動を許容
 - ± 低ノイズ回路・デバイスが不要

例: デルタ・シグマADC

- | サブミクロンCMOSのアナログCMOS回路
- ! 高精度回路が不要
- ! 低ノイズ回路が不要

マルチプロセッサ構成

- ² デジタルの世界では、マルチプロセッサ構成は非常に一般的
 - ± 多くの低性能プロセッサ
 - + 高性能を実現

- 2 問題点
 - ± ソフトウエア開発の負担が重い
 - センテンクロセッサの性能 と プロセッサ1個のM 倍の性能
 M:プロセッサ数

インターリーブADCの原理と問題点

² M 個のADCのインターリーブで M 倍のサンプリングレートを実現
 ± マルチプロセッサ構成の観点から、非常に効果的
 ± サンプリングレートの高いADC に適している

² チャネル間ミスマッチによって S/N が低下 通常キャリブレーションが必要 アナログ回路システムのミスマッチ

2 回路レベルのミスマッチ
 例: 差動ペアのオフセット Vos

- ² システムレベルのミスマッチ
 - 例: インターリーブADCのチャネル間のミスマッチ

3. ミスマッチが独立して

存在する場合の影響

チャネル間ミスマッチの影響

- オフセットミスマッチの影響

オフセットミスマッチの時間領域での影響

- 2 パターンノイズ
 - ± ほぼ入力周波数と独立
 - ± 加算的ノイズ
 - ± f_s=M 周期
 - f_s:サンプリング周波数 M:チャンネル数
- ² 4チャンネルADCのシミュレーション

± 正弦波入力

ADCシステムの出力とエラー

オフセットミスマッチの周波数領域での影響

2 パターンノイズの周波数 $\pm f_{noise} = k \pm f_s = \overline{M}$ k = 1; 2; 3; cc-50fs:サンプリング周波数 $\begin{bmatrix} -100 \\ -150 \\ -200 \end{bmatrix}$ M:チャンネル数 ² 4チャンネルADCのシミュレーション ± 8192点FFT -300

ADC出力のパワースペクトラム

チャネル間ミスマッチの影響

- ゲインミスマッチの影響

ゲインミスマッチの時間領域での影響

² パターンノイズ
 ± 入力正弦波のピークでエラー最大
 ± 乗算的ノイズ(AMノイズ)
 ² 4チャンネルADCのシミュレーション

± 正弦波入力

² パターンノイズの周波数

$$f_{noise} = f_{in} \S k \pounds f_s = M$$

$$k = 1; 2; 3; \text{CCC}$$

f_s :サンプリング周波数 f_{in} :入力周波数 M :チャンネル数

² 4チャンネルADCのシミュレーション
 ± 8192点FFT

ADC出力のパワースペクトラム

- ² 4チャンネル6ビットADCの シミュレーション
- ² ゲインミスマッチ:
 S/Nは入力周波数に独立
 入力振幅に独立

チャネル間ミスマッチの影響

- タイミングスキューの影響

タイミングスキューの時間領域での影響

- ² パターンノイズ
 ± 入力正弦波のゼロ交差 (スルーレート最大) 付近で最大のエラー
 ± ゲインミスマッチとは逆
 ± PMノイズ
- ² 4チャンネルADCのシミュレーション
 - ± 正弦波入力

タイミングスキューの周波数領域での影響

- ² パターンノイズの周波数
 - $f_{noise} = f_{in} \S k \pounds f_{S} = M$ k = 1; 2; 3; CC
- f_s :サンプリング周波数 f_{in} :入力周波数 M :チャンネル数 ± ゲインミスマッチの場合と同じ 2 4チャンネルADCのシミュレーション
 - ± 8192点FFT

ADC出力のパワースペクトラム

4. ミスマッチが同時に

存在する場合の影響

ミスマッチが同時に存在する場合の影響

- 2チャンネルADC

2ch ADC に複数のミスマッチが同時に存在する場合のモデル

2ch ADC に複数のミスマッチが同時に存在する場合の出力

$$V_{out}(nT_{s}) = A_{s} \cos \left(2\% f_{0n} nT_{s} + \mu_{s}\right)_{1} + A_{n} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + \frac{1}{2} f_{s}^{A} nT_{s} + \mu_{n} q_{s}^{A} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S_{diff} \cos \left(2\% q_{0n} nT_{s} + \mu_{s}\right)_{1} + 0S_{cm} + 0S$$

$$\begin{array}{rl} A_{s} &=& AG_{r}^{r} \overline{\frac{\cos^{2}\left(\frac{1}{4}f_{in}\pm t\right) + \ ^{\otimes}{}^{2}\sin^{2}\left(\frac{1}{4}f_{in}\pm t\right)}} \\ A_{n} &=& AG^{r} \overline{\ ^{\otimes}{}^{2}\cos^{2}\left(\frac{1}{4}f_{in}\pm t\right) + \sin^{2}\left(\frac{1}{4}f_{in}\pm t\right)} \\ \mu_{s} &=& \arctan f^{\otimes} \tan \left(\frac{1}{4}f_{in}\pm t\right)g \\ \mu_{n} &=& \arctan f tan \left(\frac{1}{4}f_{in}\pm t\right) = ^{\otimes}g \end{array}$$

2ch ADC に複数のミスマッチが同時に存在する場合の出力のパワースペクトラム

解析式と数値計算の結果が一致 + 解析式の正当性を確認

2ch ADC に複数のミスマッチが同時に存在する場合の SNR の低下

32

ミスマッチが同時に存在する場合の影響

- 4チャンネルADC

4ch ADC に複数のミスマッチが同時に存在する場合のモデル

4ch ADC に複数のミスマッチが同時に存在する場合の出力のパワースペクトラム

解析式と数値計算の結果が一致 + 解析式の正当性を確認

4ch ADC に複数のミスマッチが同時に存在する場合の SNR の低下

5.帯域ミスマッチの影響

帯域ミスマッチの影響

- 2チャンネルADC

2ch ADC に帯域のミスマッチが存在する場合のモデル

2 帯域のミスマッチ

- ± ゲインと位相のミスマッチ
- ± ゲインミスマッチとタイミングスキューに相似
- ± ゲイン, 位相は周波数の関数

2ch ADC に帯域のミスマッチが存在する場合の出力

$$V_{out}(nT_{s}) = A_{s}\cos(2^{4}f_{An}nT_{s} + \mu_{s}) + A_{n}\cos(2^{4}f_{An}nT_{s} + \mu_{s}) + A_{n}\cos(2^{4}f_{An}nT_{s}) + A_{n}\cos(2^{4}f_{An}nT_{s} + \mu_{s}) + A_{n}\cos(2^{4}f_{An}nT_{s} + \mu_{s}) + A_{n}\cos(2^{4}f_{An}nT_{s}) + A_{n}\cos(2^{4}f_{An}nT_{$$

2ch ADC に帯域のミスマッチが存在する場合の出力のパワースペクトラム

解析式と Spiceシミュレーション結果が一致 + 解析式の正当性を確認

2ch ADC に帯域のミスマッチが存在する場合の SNR の低下

帯域ミスマッチの影響

- 4チャンネルADC

4ch ADC に帯域のミスマッチが存在する場合のモデル

4ch ADC に帯域のミスマッチが存在する場合の出力

$$V_{out}(nT_{s}) = {}^{r} \frac{1}{A_{sc}^{2} + A_{ss}^{2}} \cos 2^{4}f_{in}nT_{s} i \arctan \frac{\tilde{A}_{ss}^{2}}{A_{ss}^{2}} + \frac{1}{A_{n1c}^{2} + A_{n1s}^{2}} \cos \frac{\tilde{A}_{ss}^{2}}{2^{4}} f_{in} + \frac{1}{4}f_{s}^{2} nT_{s} i \arctan \frac{\tilde{A}_{n1s}^{2}}{A_{n1c}^{2}} + \frac{1}{A_{n2c}^{2} + A_{n2s}^{2}} \cos \frac{\tilde{A}_{ss}^{2}}{2^{4}} f_{in} + \frac{1}{4}f_{s}^{2} nT_{s} i \arctan \frac{\tilde{A}_{n1s}^{2}}{A_{n1c}^{2}} + \frac{1}{A_{n2c}^{2} + A_{n2s}^{2}} \cos \frac{\tilde{A}_{ss}^{2}}{2^{4}} f_{in} + \frac{1}{2}f_{s}^{2} nT_{s} i \arctan \frac{\tilde{A}_{n2s}^{2}}{A_{n2c}^{2}} + \frac{1}{A_{n2c}^{2} + A_{n2s}^{2}} \cos \frac{\tilde{A}_{ss}^{2}}{2^{4}} f_{in} + \frac{1}{4}f_{s}^{2} nT_{s} i \arctan \frac{\tilde{A}_{n3s}^{2}}{A_{n2c}^{2}} + \frac{1}{A_{n3c}^{2} + A_{n3s}^{2}} \cos \frac{\tilde{A}_{ss}^{2}}{2^{4}} f_{in} + \frac{3}{4}f_{s}^{2} nT_{s} i \arctan \frac{\tilde{A}_{n3s}^{2}}{A_{n3c}^{2}} + \frac{1}{A_{n3c}^{2}} + \frac{1}{A_{n3c}^{2}} \sin \frac{1}{4} + \frac{1}{4}f_{s}^{2} nT_{s} i \arctan \frac{\tilde{A}_{n3s}^{2}}{A_{n3c}^{2}} + \frac{1}{A_{n3c}^{2}} \sin \frac{1}{4} + \frac{1}{4}f_{s}^{2} nT_{s}^{2} i \arctan \frac{\tilde{A}_{n3s}^{2}}{A_{n3c}^{2}} + \frac{1}{4} + \frac{1}{4}f_{s}^{2} nT_{s}^{2} i \arctan \frac{\tilde{A}_{n3s}^{2}}{A_{n3c}^{2}} + \frac{1}{4} + \frac{1$$

Asc; Ass; An1c; An1s; An2c; An2s; An3c; An3sは f_{in}; f_{c1}; f_{c2}; f_{c3}; f_{c4}の関数 4ch ADC に帯域のミスマッチが存在する場合の出力のパワースペクトラム

解析式と Spiceシミュレーション結果が一致 + 解析式の正当性を確認

6.まとめ

- インターリーブADCのミスマッチの影響について
 - 2 複数のミスマッチが同時に存在する場合の解析式を導出
 - 2 帯域のミスマッチが存在する場合の解析式を導出
 - 2 実際のアプリケーションの80%以上をカバーする

2チャンネルと4チャンネルについて解析