ECT-08-23

リング発振器を用いた デジタルPWM発生回路

2008.03.26

清水一也(群馬大学), 安藤和正(東芝LSIシステムサポート), 森偉文樹, O宮島広行, 小林春夫, 傘昊, 高井伸和, 堀口将史(群馬大学),

村山知支人,西田幸弘,吉田博史(東芝LSIシステムサポート)

■研究背景•目的

- デジタル制御電源とDPWM発生回路
- ■様々なタイプのDPWM発生回路の検討
- バッファ遅延のばらつきとダイナミックマッチング

■提案するリング発振器を用いたDPWM発生回路

-バッファがインバータの場合

-バッファが完全差動構成の場合

■まとめ・今後の課題

■研究背景・目的

■ デジタル制御電源とDPWM発生回路 ■様々なタイプのDPWM発生回路の検討 ■バッファ遅延のばらつきとダイナミックマッチング ■ 提案するリング発振器を用いたDPWM発生回路 -バッファがインバータの場合 -バッファが完全差動構成の場合 ■まとめ・今後の課題

研究背景

■電源回路への要求大■

■近年、LSIの超大規模化・微細化、マイクロプロセッサ性能向上

- ・スイッチング時間高速化(数十psec)
- ・電源電圧の動作マージン減少(LSIの低電力化)
- ・電圧変動量の増加(半導体微細化)

■デジタル制御電源に関心

■電源とデジタル回路の1チップシステムLSI化 ■高度な制御理論や新トポロジーの導入

■研究背景·目的

■デジタル制御電源とDPWM発生回路

■様々なタイプのDPWM発生回路の検討

■バッファ遅延のばらつきとダイナミックマッチング

■提案するリング発振器を用いたDPWM発生回路

-バッファがインバータの場合

-バッファが完全差動構成の場合

■まとめ・今後の課題

デジタル制御電源とは

■ スイッチング電源回路図

■デジタル方式

デジタル制御電源の特徴

■ メリット

- ・効率・応答・ノイズ性能向上
- ・回路変更・追加のカスタム対応力の向上
- ・設計スピードの向上
- ・小型化・低コスト化・信頼性の向上

■ デメリット

- ・消費電力:大
- ・高コスト
- 高分解能PWM回路が必要

DPWM発生回路とは

DPWM発生回路の問題点

バッファ遅延: τ ⇒ 時間分解能

バッファ数を減らしたい(回路規模を小さくしたい) バッファ遅延ばらつきの影響を小さくしたい

■研究背景·目的 ■ デジタル制御電源とDPWM発生回路 ■様々なタイプのDPWM発生回路の検討 ■バッファ遅延のばらつきとダイナミックマッチング ■ 提案するリング発振器を用いたDPWM発生回路 -バッファがインバータの場合 -バッファが完全差動構成の場合 ■まとめ・今後の課題

セグメント型回路構成(Type1)

バッファ遅延: τ ⇒ 時間分解能

セグメント型回路構成(Type2)

- × 単調増加性が保証されない
- × バッファ数:多 ⇒ 回路規模:大
- O バッファ遅延ばらつきの影響:小(ダイナミック・マッチングによる)

バイナリ型回路構成

バッファ遅延: τ ⇒ 時間分解能

× 単調増加性が保証されない
× バッファ数:多 ⇒ 回路規模:大
× バッファ遅延ばらつきの影響:大
○ デコーダ回路不要

バッファ遅延の差(_{7 1}- 7 2)を最小分解能 とする場合の回路構成(Type1)

バッファ遅延の差(_{7 1}- 7 2)を最小分解能 とする場合の回路構成(Type2)

■研究背景·目的 ■ デジタル制御電源とDPWM発生回路 ■様々なタイプのDPWM発生回路の検討 ■バッファ遅延のばらつきとダイナミックマッチング ■提案するリング発振器を用いたDPWM発生回路 -バッファがインバータの場合 -バッファが完全差動構成の場合 ■まとめ・今後の課題

■研究背景·目的 ■ デジタル制御電源とDPWM発生回路 ■様々なタイプのDPWM発生回路の検討 ■バッファ遅延のばらつきとダイナミックマッチング ■ 提案するリング発振器を用いたDPWM発生回路 -バッファがインバータの場合 -バッファが完全差動構成の場合 ■まとめ・今後の課題

提案するDPWM発生回路の特徴

<u>ダイナミックマッチング</u> ⇒ バッファ遅延ばらつきを ⇒非線形性を改善時間的に平均化

発振タイミング、出力タイミングを選択

■研究背景·目的 ■ デジタル制御電源とDPWM発生回路 ■様々なタイプのDPWM発生回路の検討 ■バッファ遅延のばらつきとダイナミックマッチング ■提案するリング発振器を用いたDPWM発生回路 -バッファがインバータの場合 -バッファが完全差動構成の場合 ■まとめ・今後の課題

リング発振回路部の回路構成

バッファ(インバータ)の回路構成

インバータのDC解析によるMOSのサイズの決定

2入力MUXの回路構成と動作

- d1 001001001001
- sel 0 1 0 1 0 1
- Z 01100100101

sel	Ζ
0	d o
1	d 1

2入力MUXのTR解析によるクロックの変化

XTSMC 0.18 μ m CMOS

4入力MUXの回路構成と動作

4入力MUXのTR解析によるクロックの変化

XTSMC 0.18 μ m CMOS

リング発振回路部+MUX1の回路構成

Koba.LAB@gunma

レイアウト結果(リング発振回路部+MUX1)

■研究背景·目的 ■デジタル制御電源とDPWM発生回路 ■様々なタイプのDPWM発生回路の検討 ■バッファ遅延のばらつきとダイナミックマッチング ■提案するリング発振器を用いたDPWM発生回路 -バッファがインバータの場合 -バッファが完全差動構成の場合 ■まとめ・今後の課題

リング発振回路部の回路構成

リング発振回路部の動作(初期設定)

リング発振回路部の動作(ループ形成)

リング発振回路部の動作(発振)

リング発振回路部の動作(発振)

■研究背景·目的 ■ デジタル制御電源とDPWM発生回路 ■様々なタイプのDPWM発生回路の検討 ■バッファ遅延のばらつきとダイナミックマッチング ■ 提案するリング発振器を用いたDPWM発生回路 -バッファがインバータの場合 -バッファが完全差動構成の場合 ■まとめ・今後の課題

チップのファブリケーション・評価