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SUMMARY  This paper proposes a new architecture for multibit com-
plex bandpass AXAD modulators with built-in Switched-Capacitor (SC)
circuits for application to Low-IF receivers such as used for Bluetooth and
WLAN. In the realization of complex bandpass AZAD modulators, we face
the following problems: (i) SNR of AD converter is deteriorated by mis-
matches between internal analog I and Q paths. (ii) Layout design becomes
complicated because of signal lines crossing by complex filter and feedback
from DAC for I and Q paths in the complex modulator, and this increases
required chip area. We propose a new structure for a complex bandpass
AXAD modulator which can be completely divided into two paths without
layout crossing, and solves the problems mentioned above. The two parts
of signal paths and circuits in the modulator are changed for I and Q while
CLK is changed for High/Low by adding multiplexers. Symmetric circuits
are used for I and Q paths at a certain timing, and they are switched by
multiplexers to those used for Q and I paths at another timing. Therefore
the influence from mismatches between I and Q paths is reduced by dy-
namic matching. As a result, the modulator is divided into two separate
parts without crossing signal lines between I and Q paths and its layout de-
sign can be greatly simplified compared with conventional modulators. We
have conducted MATLAB simulations to confirm the effectiveness of the
proposed structure.

key words: complex bandpass ALAD modulator, I, Q path mismatches,
dynamic matching, multiplexer

1. Introduction

In the RF receiver of communication systems such as cellu-
lar phones and wireless LANs, low-IF receiver architecture
is frequently used. In conventional low-IF receiver architec-
tures, two real (one input and one output) AZAD modulators
are used for In-phase (I) and Quadrature (Q) paths. Its disad-
vantage is that not only input signals but also image signals
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are converted by ADCs. On the other hand, complex band-
pass AXAD modulators can provide superior performance
to a pair of real bandpass AXAD modulators of the same or-
der. They process just input I and Q signals and not image
signals, and AD conversion can be realized with low power
dissipation, so they are desirable for such low-IF receiver
applications [1]-[4]. The performance of the complex band-
pass AXAD modulator is degraded by mismatches between I
and Q paths which cause both signal and quantization noise
in the mirror image band and alias into the design signal
band, thus decrease the SNDR of the complex modulator.
This paper presents a new Switched-Capacitor topol-
ogy architecture which is suitable for complex bandpass
AYXAD modulators and compensates for mismatches be-
tween I and Q paths. The new architecture reduces the
amount of mirror image band quantization noise aliased into
the signal band. It also simplifies the modulator structure
into a symmetrical configuration with no crossing of signal
lines between the two circuit parts, and thus required chip
area becomes smaller and its layout design can be simpli-
fied. Moreover, this technique can be extended to multi-bit
modulators suitable for complex bandpass DWA algorithm

[51-7].
2. New Structure of Complex Bandpass Filter

Figure 1(a) shows a conventional complex bandpass filter
and the inputs and outputs are written as follows:

Low(n) = lin(n = 1) = Qou(n — 1) 6]
Qou(n) = Qin(n = 1) + Loyy(n — 1) 2

Figure 1(b) shows the proposed structure of a complex band-
pass filter, where four multiplexers (MUX) are added to
the conventional structure. The select signal (SEL) for the
MUXSs is generated by half of CLK in Z~! block and they
are synchronized. Compared to the conventional structure,
we see that the proposed complex filter can be divided into
two separate parts without any crossing of signal lines,

The proposed complex filter operates with two states;
in state 1 (in Fig. 1(c)), the upper part of circuit is used
for I path, while the lower path is for Q path. In state 2
(in Fig. 1(d)), the upper part of circuit is used for Q path,
while the lower path is for I path. In our proposed con-
figuration, the input I and Q signals alternate between the

Copyright © 2006 The Institute of Electronics, Information and Communication Engineers
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Fig.1 (a) Conventional complex bandpass filter. (b) Proposed structure
of a complex bandpass filter. (c) Operation of the proposed complex band-
pass filter (state 1). (d) Operation of the proposed complex bandpass filter
(state 2).

above two parts of the complex filter by SEL signal defined
above. Thus the inputs and outputs are written as the same
as Egs. (1) and (2).

3. Conventional Complex Bandpass AXAD Modulator

Figure 2 shows a conventional configuration of a discrete-
time second-order complex bandpass AXAD modulator [8],
which is composed of a second-order complex bandpass
filter, two 3-bit ADCs and four 3-bit DACs. Multi-bit
ADCs/DACs are used inside the modulator to obtain high
SNR with a low-order loop filter and relax the required per-
formance for OP-Amps. MUXs and data-weighted averag-
ing (DWA) logic circuits [5]-[7] are added to reduce the ef-
fect of nonlinearities of multi-bit DACs inside the modula-
tor.

The input and output of the complex bandpass AXAD
modulator shown in Fig. 2 are given by

IOH[ + jQOl{f
|1 . . .
= 2|3 Uin + jQin) + (2= Y'(Er + jEg) .
Internal signals in Fig. 2 can be written as follows:

ILiin+ 1) =a-I;;(n+1)

+ by - DAC1(n+ 1) — Q1(n) 3)
Oi(n+1)=a; - Qin+1)

+ by - DAC2(n + 1) + I,(n) 4)
Ln+1)=a, I)(n)

+ by - DAC3(n + 1) — Q2(n) (5)
Qo(n+1) =ay - Ox(n)

+ by - DACA(n + 1) + Ln). (6)

Here, the inputs of DAC1 and DAC4 are fedback from the
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Fig.2 Conventional discrete-time second-order complex bandpass
AXAD modulator. (Here a; =1/3, by =-2/3, ax =3/2, by =2)

output of ADCI, while the inputs of DAC2 and DAC3 are
fedback from the output of ADCQ.

The following two problems arise when implementing
the conventional configuration in Fig. 2.

1. Complexity of chip layout design:
There are many I and Q signal crossing lines in
the complex bandpass AXAD modulator as shown in
Fig. 2. There are not only signal crossings between the
I and Q paths of the complex filter in the forward paths,
but also signal crossings between the feedback paths
from ADCs through four DACs in I and Q paths. As
their result, the signal lines become long, which leads
to large chip area, and crosstalk may occur, and also
large power dissipation may be needed to drive large
parasitic capacitances.

2. Mismatches between I and Q paths:
Mismatches between forward I and Q paths cause an
image signal in Fig. 2, and the quantization noise of the
mirror image band aliases into the design signal band,
which degrades the modulator SNR (see Appendix).
Some ideas [10]-[13] have been proposed to reduce
their influence, but they are not very suitable for our
modulator structure.

Therefore, we propose a new architecture of a complex
bandpass AXAD modulator to solve the above two prob-
lems, and we have conducted MATLAB simulations to ver-
ify its effectiveness.

Remark The effect of mismatches among DACs in feed-
back paths can be reduced by our already proposed DWA
algorithm [5], [6] because it alternates the DACs for I and Q
paths every sample cycle, and hence it is not a problem here.

4. Proposed Structure of Complex Bandpass AXAD
Modulator

Figure 3 shows the structure of our proposed complex band-
pass AXAD modulator. First, we will show that the pro-
posed structure is equivalent to the conventional one shown
in Fig. 2 when their circuits are ideal (no mismatches).

At time n = 2k — 1 (Fig. 4):
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Fig.3  Proposed structure of a complex bandpass AXAD modulator.

xc=

Fig.4  Operation of proposed modulator (at time n = 2k — 1).

The input analog signal for the upper part circuits is I;; while
the one for the lower part circuits is Q;,. Also the output
digital signal from the upper part ADCL is I,,, while the
one from the lower part ADC2 is Q,,,. Then the internal
signals relationship is given as follows:

Ni(2k) = ay - 1;n(2k)

+ by - DAC1(2k) = N1 (2k—-1) (7
My (2k) = a; - Qin(2k)
+ by - DAC2(2k) + M1(2k - 1) ®)
N>(2k) = ar - N2k - 1)
+ by - DAC2(2k) + N2k — 1) )
M>(2k) = ay - M2k — 1)
+ by - DAC4(2k) — M>(2k — 1). (10)
Here
k=..-2,-1,0,1,2,3,...
Let
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Fig.5  Operation of proposed modulator (at time n = 2k).

N(2k-1)= 12k - 1)

M2k-1)=12k-1)

N2k —1) = L2k - 1)

M2k — 1) = 022k — 1).
Then we see from Fig. 4 that ADC1 output (I signal) is fed-
back to DAC1 and DAC3, and ADC2 output (Q signal) is
to DAC2 and DAC3. Thus Egs.(7) and (3), Egs. (8) and

(4), Egs. (10) and (5), Egs. (9) and (6) have the same forms
respectively.

At time n = 2k (Fig. 5):
The input analog signal for the lower part circuits is I;; while
the one for the upper part circuits is Q;,. Also the output
digital signal from the lower part ADC2 is I,,, while the
one from the upper part ADC1 is Q,,,. Then we have the
followings:
N1Q2k+1)=a; - 0k +1)
+ by - DAC1(2k + 1) — N1 (2k) (11)
M\2k+1)=ay - 1,2k + 1)
+ by - DAC2(2k + 1) + M (2k)  (12)
N2k + 1) = ar - Ni(n)
+ by - DAC3(2k + 1) + N2(2k)  (13)
My(2k + 1) = ay - M1(2k)
+ by - DAC4Q2k + 1) — Mr(2k).  (14)

Let

Ni(2k) = 1, (2k)

M, (2k) = Q:1(2k)

N2 (2k) = Q2(2k)

M>(2k) = I,(2k).
Similarly we see from Fig. 5) that ADC1 output (Q signal)
is fedback to DAC1 and DAC3 and ADC2 output (I signal)

is fedback to DAC2 and DAC3. Hence Eqs. (12) and (3),
Egs. (11) and (4), Egs. (13) and (5), Eqgs. (14) and (6) have
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the same forms respectively.

From the above statements, we see that the proposed
structure (Fig.3) is equivalent to the conventional one
(Fig. 2) when their circuits are ideal.

Also we see from Fig. 3 that the proposed structure has
no crossing signal lines for either the forward paths of Z~!
block or the feedback paths from DACs, which is different
from the conventional modulator in Fig. 2. Hence the pro-
posed modulator can be completely divided into two sep-
arate parts and its layout design can be greatly simplified
compared with the conventional one. Then its internal sig-
nal lines can be shorter, which leads to smaller chip area.

For the proposed architecture, we note that MUXs can
be realized by MOS switches easily. Moreover we add
MUXs which alternate the polarity of the fedback signals
between +1 and —1 at every sampling time to the feedback
paths of filters and DACs. This is to keep the polarity of in-
ternal complex signals so that they are processed as a com-
plex signal form [14]. In fact we can realize this simply
by chopping the two differential outputs at every sampling
time.

5. Reduction of SNR Deterioration by I and Q Path
Mismatches

We explain why our proposed structure can reduce the in-
fluence of mismatches between I and Q paths. Note that for
the circuit surrounded by a dotted line in Fig. 3, we have the
followings:

NiQRk—-1)= 012k - 1) while n =2k -1,
N1(2k) = 1, (2k) while n = 2k.

We see that ADC1 output is for I, at time n = 2k — 1, and
it is for Q,,, at time n = 2k. DACs are used alternately for I
and Q paths when CLK toggles. Thus the SNR degradation
by mismatches between the upper and lower paths can be
reduced by this dynamic matching.

Furthermore, we propose another dynamic matching
technique for SC circuits to reduce the influence of mis-
matches between capacitors in the complex filter. Figure 6
shows the SC implementation of a complex bandpass filter
which uses Z~! blocks [9] in Fig. 3.

For an ideal complex modulator shown in Fig. 6 (with-
out any mismatches), the values of the capacitors in the com-
plex filter in Fig. 3 should have the following relationships:

Cinl _ CinQ — al),
Coutl ComQ
7 7
Z CDIn Z CDQn
n=0 n=0
= = bl .
Cuutl Cuth ( )

Ccpr = CCPQ = Cour = ComQ~

However, in real chips the ratios of the capacitances do not
satisfy the above equations due to process variations, which
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0
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Fig.6  SC implementation of proposed complex bandpass filter (which
is the surrounded part by a dotted line in Fig. 3).

Icch/Coth I
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Fig.7  Equivalent circuit of the proposed first-stage filter in the modu-
lator which can reduce the influence of capacitor mismatches by dynamic
matching.
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cause the mismatches between I and Q paths and the mod-
ulator SNR degrades. According to this consideration, we
propose to add another dynamic matching technique for the
SC filter in the first stage of the modulator (Fig. 3) to reduce
the influence of capacitor mismatches. The SC filter circuit
operates as follows (Fig. 7):

1. Ciyy and Cj,g are fixed for I and Q paths in the front of
the input MUX. Input signals 7;, and Q;, charge to C;,;
and Cj,p at first, and then they transfer the charges to
upper and lower paths alternately by the input MUX.
This idea is based on our simulation result that the in-
fluence of mismatches in C;,; and Ciyp is small.

2. We exchange capacitors for Coyrr and Ccepr, Courg
and Ccpg very sampling time by MUXs, in order to
reduce the influence of mismatches between Cpyr; and
Ccrr, Courg and Ccpg.
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Fig.8 Comparison for SNR of modulators in three cases. (parameter as

Table 1).

With the above configuration and operation, we can reduce
influence of mismatches in the modulator further. Since the
influence of mismatches in the second-stage filter is smaller,
we form the above operation for the first-stage only.

6. Simulation of Proposed Architecture

We have conducted MATLAB simulations to confirm the
effectiveness of the proposed architecture with dynamic
matching. A second-order complex bandpass modulator
with internal ADCs/DACs of 9-level resolution (in Fig. 2 or
Fig. 3) was used for the simulation with the following three
cases:

1. An ideal modulator (in Figs.2, 3) without any mis-
matches and nonlinearities between I and Q paths is
used.

2. A modulator in Fig. 2 with I and Q paths mismatches,
and internal DACs with nonlinearities is used.

3. A modulator which employs the proposed architecture
(in Fig. 3) and whose mismatches and nonlinearities are
the same as case 2 is used.

Figure 8 shows the simulation result comparison for SNR of
the modulators in three cases. We see that in case 1, SNR
of the ADC increases as OSR increases. However in case
2 (where mismatch parameters between I and Q paths are
shown in Table 1), SNR saturates as OSR increases. On the
other hand, in case 3, the mismatch effects are out of signal
band by dynamic matching and their influence on the modu-
lator accuracy is reduced which leads to SNR improvement.
Also Fig. 9 shows the simulation result comparison for SNR
of the modulators with ideal DACs, where mismatch param-
eters are shown in Table 2.

7. Conclusion

We have proposed a new architecture of a multibit com-
plex bandpass AXAD modulator which is built by switched-
capacitor circuits targeted for low-IF receivers applications
in Bluetooth and WLAN. The influence of mismatches be-
tween I and Q paths to SNR is reduced by adding some

IEICE TRANS. FUNDAMENTALS, VOL.E89-A, NO.4 APRIL 2006

Table 1  Parameter 1 for capacitor mismatches between I and Q paths.
I Q
Cin (1-0.023)*1 | (1-0.023)*1
Cout (1+0.014)*3 | (1-0.028)*3
Ccp (1-0.035)*3 | (1+0.028)*3
Cpo (1-0.0004)*2 | (1-0.018)*2
Cpi (1-0.0014)*2 | (1+0.014)*2
Cpa (1+0.0018)*2 | (1+0.008)*2
Cp3 (1-0.0006)*2 | (1+0.014)*2
Cps (1+0.0012)*2 | (1+0.012)*2
Cps (1+0.0012)*2 | (1-0.006)*2
Cpe (1-0.018)*2 | (1-0.024)*2
Cp7 (1-0.000)*2 | (14+0.000)*2
160 SNR VS OSR _
=& |deal Modulator
L Modul ith 1,Q Mi
140 Proposed ot with 1,Q Mi:
120r
o L
S, 100
80
4
" 60r
40 e
Ve
20
0 ;
0 1 2 3 4 5 6 7 8 9

OSR[2M]

Fig.9 Comparison for SNR of modulators with ideal DACs in three
cases. (parameter as Table 2).

Table 2 Parameter 2 for capacitor mismatches between I and Q paths.
I Q
Cin (1-0.03)*1 | (140.03)*1
Couwr || (140.014)*3 | (1-0.03)*3
Ccp (1-0.03)*3 | (1+0.02)*3

multiplexers to the modulator circuitry, which are relatively
easy to implement. As another result, the modulator is di-
vided into two separate parts without crossing of signal lines
between I and Q paths and its layout design can be greatly
simplified compared with conventional circuits. The validity
of the proposed architecture and circuit technique has been
confirmed by MATLAB simulation. As the next step, we
are designing and laying out the transistor level circuits of
the multi-bit complex bandpass AXAD modulator with the
proposed architecture and dynamic matching technique.
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Resolution Deterioration by I and Q Mis-
matches in a Complex Bandpass AXAD
Modulator

According to the thinking of complex signal processing

[14],

we consider the reason to resolution (SNR) deterio-

rates by I and Q mismatches. We can get the relationship of
complex inputs and outputs as following while the complex
modulator shown in Fig. A- 1 without any mismatches(a =

0):

Iout + jQOlAt

H 1
Z—Il'n-i-','n +—E,'+.E.
Ty gl tiQm) + B+ JE)

913
[pac |
Analog | DAC, ] Digital
Input 1+ lEi Output
. o
lin lout
e TR
H(z)
O ADC,
Qin Qout
1- 0 complex Filter TEq
|I DAC, |I
Fig.A-1 A complex AD modulator with I and Q paths mismatches as a.

However,while the modulator with I and Q mismatches (@ #
0), the equation will be written as follows:

IOM[ + onut

H+ (1 -a»)H?
I[n+ j in
15 2H 1 (1 = oty Jin + 7Qm)
aH
+ I'n_ j in
1520 1 (1 = oy Jin = JOm)
+ 1+ H (E; + JE,)
1+2H+ (1 a2 1T I5a
aH .
(Ei_]Eq)~

+
1+2H + (1 -a?)H?

Here, the quantization noise of image signal (E; — jE,) will
alias into the signal band, thus damage the SNR of the mod-
ulator, and the image noise transfer function can be written

as follows:

aH

1+2H + (1 -a?)H?
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