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Spatial and Temporal Dynamics of Vision Chips

Including Parasitic Inductances and Capacitances

Haruo KOBAYASHI† and Takashi MATSUMOTO††, Members

SUMMARY There are two dynamics issues in vision chips:
(i) The temporal dynamics issue due to the parasitic capacitors
in a CMOS chip, and (ii) the spatial dynamics issue due to the
regular array of processing elements in a chip. These issues are
discussed in [1]–[3] for the resistor network with only associated
parasitic capacitances. However, in this paper we consider also
parasitic inductances as well as parasitic capacitances for a more
precise network dynamics model. We show that in some cases
the temporal stability condition for the network with parasitic
inductances and capacitances is equivalent to that for the net-
work with only parasitic capacitances, but in general they are
not equivalent. We also show that the spatial stability condi-
tions are equivalent in both cases.
key words: network stability, vision chip, neuro chip, neural
network, negative resistor

1. Introduction

This study has been motivated by spatial versus tem-
poral stability issues of analog image-processing neuro
chips (vision chips). The image-smoothing vision chip
in [4], for instance, consists of a regular array of photo-
sensors with conductances g0 > 0, g1 > 0, g2 < 0
(Fig. 1). We refer the reader to [4] for the chip de-
tails. Since the chip involves negative conductances
g2, both spatial and temporal stability issues naturally
arise. There are two intriguing elements. First, our
earlier numerical experiments suggested that generally
a vision chip is temporally stable if and only if it is
spatially stable, where spatial stability means that the
node voltage distribution behaves “properly.” Second,
spatial dynamics naturally induces a discrete linear dy-
namical system so that its stability should be checked
by its eigenvalues. “ A discrete linear dynamical sys-
tem is stable if and only if all the eigenvalues lie inside
the unit circle of the complex plane.” This statement
turned out to be false. Namely, due to the noncausal
nature of the dynamics, if λ is an eigenvalue, so is 1/λ,
and hence the stability condition for causal linear sys-
tems is never satisfied.

Most of the fundamental issues involving these two
elements have been settled in [1], [2] for 1D and 2D ar-
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ray cases. For instance, a network is temporally stable
if and only if it is spatially stable, except for a set of
Lebesgue measure zero in the parameter space. An-
other fundamental result was that a network is spatially
stable if and only if the eigenvalues of the dynamics are
off the unit circle, even though they can be outside the
unit circle. These results are far from trivial. One of
reasons that makes these results crucial is the boundary
conditions associated with the finiteness of a network.
Even if the eigenvalue conditions are satisfied, solutions
can oscillate or explode if the boundary conditions are
inappropriate.

Although the previous results in [1], [2] are com-
pletely rigorous, the results are for the resistor network
with only associated parasitic capacitances; associated
parasitic inductances are neglected as a first-order ap-
proximation. However, in this paper we consider par-
asitic inductances as well as parasitic capacitances for
a more precise network dynamics model. We show in
some cases that the temporal stability condition for the
network with parasitic inductances and capacitances is
equivalent to that for the network with only parasitic
capacitances, but in general they are not equivalent.
We also show that the spatial stability conditions are
equivalent in both cases.

Our approach in this paper is a systematic ex-
ploitation of the circulant network structure for 1D
cases; speaking roughly, a circulant network has a
“ring” structure as shown in Fig. 2. The validity of such

Fig. 1 The image-smoothing neuro chip. Only one unit is
shown. C© IEEE 1992.
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Fig. 2 A 1D circulant network with m = 2. C© IEEE 1995.

an approach has already been discussed in [2], and we
also remark that our results here can be extended to
2D cases in a similar manner to [2].

We also remark that the analysis method of resis-
tor networks described here as well as [1]–[3], [5] may
be useful not only for vision chips but also for the sub-
strate noise analysis of the integrated circuits, where
their substrates are modeled with 2D or 3D resistive
networks [6].

2. Problem Formulation

Now let us consider a 1D network with N nodes num-
bered 0 through N − 1, where each node k is excited
by a current source uk and has an admittance y0 to
ground, and an admittance yp to nodes (k + p) for
p = ±1,±2, . . .±m. Note that yp = y-p because node
k connects to node k+ p with yp whereas node (k + p)
connects to node ((k + p) − p), i.e., node k with y-p
and hence yp = y-p. The network is said to be circu-
lant if the rightmost and leftmost nodes are connected
together, and thus the network is of a ring structure.
Figure 2 shows a circulant network where m = 2 and
the admittance yp is composed of a conductance gp and
a capacitance cp in parallel (p = 0, 1, 2, Fig. 3). Then
we obtain the following equation from Kirchhoff’s cur-
rent law at node k:

−
(
y0 + 2

m∑
p=1

yp

)
vk +

m∑
p=1

yp(vk-p + vk+p) + uk = 0.

Then letting

v := (v0, v1, . . . , vN-1)T ,

u := (u0, u1, . . . , uN-1)T ,

α0 := −
(
y0 + 2

m∑
p=1

yp

)
,

Fig. 3 The admittance yp in Fig. 2 consists of a conductance
gp and a capacitance cp in parallel (p = 0, 1, 2.)

αp = yp, p = 1, 2, . . . ,m,

the state equation is given by

Y v + u = 0 (1)

where

Y := circl(α0, α1, . . . , αm, 0, . . . , 0, αm, . . . , α1)

and circl() denotes a circulant matrix [7]. Let F be a
Fourier matrix with size N×N and note that F ∗F = I,
then Eq. (1) leads to

F ∗Y FF ∗v + F ∗u = 0. (2)

It follows from [7] that F ∗Y F is diagonalized as follows:

F ∗Y F := Λ = diag(λ0, λ1, . . . , λN-1),

where

λk := α0 + 2
m∑

p=1

αp cos(2πpk/N)

k = 0, 1, 2, . . . , N − 1.

Letting

−F ∗v := o = (o0, o1, . . . , oN-1)T ,

F ∗u := i = (i0, i1, . . . , iN-1)T ,

then Eq. (2) reads

Λo = i.

Thus if Λ is nonsingular, the followings are obtained:
o0
i0
=

1
λ0
,
o1
i1
=

1
λ1
, . . . ,

oN-1
iN-1

=
1

λN-1
.

Note that transfer functions can be defined as follows:

G0(s) :=
o0
i0
, G1(s) :=

o1
i1
, . . . , GN-1(s) :=

oN-1
iN-1

.

(3)

We see that the network is temporally stable if and only
if all the transfer functions of G0(s), G1(s) . . . , GiN-1(s)
are stable, i.e., all of their poles are located in the left-
half of the s-plane.

This statement is very general for the temporal
stability of the network and is consistent to the previous
results [1]–[3].
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3. RCL Network

Now consider the case that the admittance yp consists
of a conductance gp, a capacitance cp and an inductance
lp as shown in Fig. 4, where gp, cp and lp can be negative.
Then the admittance yp is given by

yp =
1

1/gp + slp
+ scp

=
gp + scp + s2lpgpcp

1 + slpgp
. (4)

The reader may wonder why gp, cp and lp can be neg-
ative. For the image processing purpose, some of gp

have to be negative [4] and this negative conductance
gp < 0 can be implemented with a positive conductance
g′p(= −gp) > 0 and two admittance inverters as shown
in Fig. 5. Let c′p and l′p be parasitic capacitance and
inductance associated with g′p. Even if c′p and l′p are
positive, these can be effectively negative between the
nodes A and B due to the two admittance inverters; the
effective admittance yp between the nodes A and B is
equal to −y′p. Note also that in the previous cases [1]–
[3], the parasitic inductances were neglected as shown
in Fig. 3 where lp = 0.
Proposition 1 Consider the RCL network where yp

is given in Fig. 4 and also the following restriction is
satisfied:

lpgp = d > 0 for p = 0, 1, 2, . . . ,m, (5)

where d is a positive constant. In this case the temporal
stability condition of the RCL network is equivalent to
that of the RC network (where L is neglected as shown
in Fig. 3.)
Proof : It follows from Eqs. (4) and (5) that αp’s are
given by

α0 := − (g0+2
∑m

p=1 gp)+(s+s2d)(c0+2
∑m

p=1 cp)
1 + sd

,

αp := yp =
gp + scp + s2dcp

1 + sd
for p = 1, 2, . . . ,m.

Fig. 4 The admittance yp consists of a conductance gp, a ca-
pacitance cp and an inductance lp.

Then the transfer functions of Gk(s) described in
Eq. (3) are given by

Gk(s) =
−(1 + sd)

−µk + sνk + s2dνk
(6)

for k = 0, 1, 2, . . . , N − 1, where

µk := −
(
g0 + 2

m∑
p=1

gp

)
+ 2

m∑
p=1

gp cos(2πpk/N)

νk :=

(
c0 + 2

m∑
p=1

cp

)
− 2

m∑
p=1

cp cos(2πpk/N).

From the Routh-Hurwitz stability criteria, we obtain
the following temporal stability condition:

−µk > 0, νk > 0, dνk > 0, dν2
k > 0

for k = 0, 1, 2, . . . , N -1. Then the above conditions
yield to the following:

µk < 0, νk > 0, d > 0 (7)

for k = 0, 1, 2, . . . , N − 1. Let us compare this result
(Eq. (7)) to the RC network case in [1], [2]. “µk < 0 for
all k = 0, 1, 2, . . . , N−1” means that the system matrix
A [1], [2] is negative definite, and “νk > 0 for all k =
0, 1, 2, . . . , N − 1” is equivalent to that the capacitance
matrix B [1], [2] is positive definite. We see that the
temporal stability condition of the RCL network which
satisfies Eq. (5) is equivalent to that of the RC network.

(Q.E.D.)
Remark (i) In general, when yp is given by Eq. (4), the
transfer functions of (3) become so complicated that
they are difficult to solve analytically. However, if we
assume Eq. (5), we can solve them as shown above.
(ii) The assumption given by Eq. (5) is, in some sense,

Fig. 5 Admittance inverters can realize negative conductances,
capacitances and inductances. Suppose that VA, VB , V ′

A and V ′
B

are node voltages of A, B, A′ and B′, and also VA > VB . Then,
due to the voltage followers, VA ≈ V ′

A and VB ≈ V ′
B , and the

current I flows from node A′ to B′ with I = y′
p(V ′

A−V ′
B). We see

that the current I effectively flows from node B to node A with
I = y′

p(VA − VB) and the admittance yp between node A and B
is effectively equal to −y′

p.
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reasonable; in many conductors, their conductance val-
ues gp are inversely proportional to their length while
their inductance values lp are proportional to their
length. Hence if all conductances for p = 0, 1, ..,m are
made with the same material, lpgp yields to a positive
constant d.
Lemma 1 When Eq. (5) is satisfied and the network
is stable, the transfer function given by Eq. (6) is
minimum-phase-shift.
Proof : Since d > 0, the zero of the transfer function
given by Eq. (6) is−1/d < 0. Then its all poles and zero
are located in the left-half of the s-plane. (Q.E.D.)

When Eq. (5) is satisfied and the network is sta-
ble, the transfer function of Eq. (6) can be rewritten as
follows:

Gk(s) =
−(1 + sd)

−µk + sνk + s2dνk

:=
−Kk(1 + sd)

ω2
k + 2ξkωks+ s2

(8)

where

Kk :=
1
dνk

, ωk :=
√−µk

dνk
,

ξk :=
1
2

√
νk

−dµk
(9)

for k = 0, 1, 2, . . . , N−1. Then, according to the theory
of the second-order system, we obtain the following:
Lemma 2 (i) When 0 < ξk < 1 (i.e., 0 < νk < −4dµk),
the step response of the transfer function (8) shows no
overshoot.
(ii) When ξk = 1 (i.e., 0 < νk = −4dµk), its step
response behaves as critical damping.
(iii) When 1 < ξk (i.e., 0 < −4dµk < νk), its step
response shows overshoot.

The circuit which consists of inductors, capacitors,
and positive & negative resistors is extensively used as
a sinusoidal signal oscillator in communication circuits.
However the following lemma shows that the network
which satisfies Eqs. (2) and (5) can not work as an os-
cillator.
Lemma 3 When Eq. (5) is satisfied, the transfer func-
tion of Eq. (8) can not be of the form

Gk(s) =
−Kk(1 + sd)
ω2

k + s2
, (10)

for k = 0, 1, 2, . . . , N − 1.
Proof : If Eq. (10) is satisfied, ξk has to be zero.
However, if ξk = 0, then νk = 0 (see Eq. (9)) and the
transfer function of Eq. (6) yields to

Gk(s) =
1 + sd
µk

which is not of the form in Eq. (10). (Q.E.D.)
Proposition 2 If lpgp �= lqgq for some 0 ≤ p, q ≤

m, then the temporal stability condition of the RCL
network is not necessarily equivalent to that of the RC
network.
Proof : Consider the case m = 1 and l0g0 �= l1g1.
Then it follows from Eq. (4) that

y0 =
g0 + sc0 + s2d0c0

1 + sd0
,

y1 =
g1 + sc1 + s2d1c1

1 + sd1
,

where d0 := l0g0, d1 := l1g1 and d0 �= d1. Then the
transfer functions described in Eq. (3) are given by

Gk(s) =
1

α0 + 2α1 cos(2πk/N)

=
1

−(y0 + 2y1) + 2y1 cos(2πk/N)

= − (1 + sd0)(1 + sd1)
nk(s)

,

where

nk(s) := e0 + se1 + s2e2 + s3e3,

e0 := g0 + βkg1,

e1 := d1g0 + βkd0g1 + c0 + βkc1,

e2 := (d0 + d1)(c0 + βkc1),

e3 := d0d1(c0 + βkc1),

βk := 2(1− cos(2πk/N)).

It follows from the Routh-Hurwitz stability criteria that
the network temporal stability condition is given by

e0 > 0, e1 > 0, e2 > 0, e3 > 0,

e1e2 − e0e3 > 0.

This result means that in addition to the negative def-
initeness of the system matrix A, the positive definite-
ness of the capacitance matrix B and d0 > 0, d1 > 0,
we need to satisfy the following conditions:

d2
1g0 + βkd

2
0g1 + (d0 + d1)(c0 + βkc1) > 0, (11)

d1g0 + βkd0g1 + c0 + βkc1 > 0. (12)

If d0 = d1 > 0 (i.e. Eq. (5) is satisfied), the negative
definiteness of A and the positive definiteness B auto-
matically lead to the above conditions (11), (12), how-
ever, if d0 �= d1, they do not. Hence in this case the
temporal stability condition is more strict than that in
the RC network. (Q.E.D.)
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Proposition 3 The spatial stability condition of the
RCL network is equivalent to that of the RC network.
Proof : We need to consider the equilibrium point
for the spatial stability, and at the equilibrium, the ad-
mittance yp is given by

yp|s=0 =
1

1/gp + slp
+ scp|s=0 = gp.

This is the same as yp at the equilibrium in the RC
network, and hence the spatial stability conditions are
equivalent in both cases. (Q.E.D)
Lemma 4 In the RCL network where yp consists of gp,
cp and lp as shown in Fig. 4 and Eq. (5) is satisfied, the
spatial and temporal stability conditions are virtually
equivalent.
Proof : Note that the spatial and temporal stabil-
ity conditions of the RC network are virtually equiv-
alent [1], [2]. Then we see that according to this fact
and Propositions 1, 3, the above statement is valid.

(Q.E.D.)

4. Conclusion

We have analyzed the spatial and temporal dynamics
for the positive and negative resistor network with par-
asitic inductances as well as parasitic capacitances. We
have derived that in some cases the temporal stability
condition for the network with the parasitic inductances
and capacitances is equivalent to that for the network
with only the parasitic capacitances, but in general they
are not equivalent. We have also shown that the spatial
stability conditions are equivalent in both cases.
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