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SUMMARY This paper presents an explicit analysis of the
output error power in wideband sampling systems with finite
aperture time in the presence of sampling jitter. Sampling jit-
ter and finite aperture time affect the ability of wideband sam-
pling systems to capture high-frequency signals with high preci-
sion. Sampling jitter skews data acquisition timing points, which
causes large errors in high-frequency (large slew rate) signal ac-
quisition. Finite sampling-window aperture works as a low pass
filter, and hence it degrades the high-frequency performance of
sampling systems. In this paper, we discuss these effects ex-
plicitly not only in the case that either sampling jitter or finite
aperture time exists but also the case that they exist together,
for any aperture window function (whose Fourier transform ex-
ists) and sampling jitter of Gaussian distribution. These would
be useful for the designer of wideband sampling data acquisition
systems to know how much sampling jitter and aperture time are
tolerable for a specified SNR. Some experimental measurement
results as well as simulation results are provided as validation of
the analytical results.
key words: jitter, phase noise, aperture time, aperture win-
dow, sampling, equivalent-time sampling, ADC, track/hold cir-
cuit, digitizing oscilloscope

1. Introduction

Digitizing oscilloscopes are widely used to capture high-
frequency input signals and analyze them in the time
domain [1]–[3]. In this application, sampling jitter and
finite aperture time become more crucial as the input
signal frequency increases; sampling jitter skews data
acquisition timing points, which causes large errors in
high-frequency (large slew rate) signal acquisition. Also
finite sampling-window aperture, as defined in Sect. 3,
works as a low-pass filter—it attenuates high-frequency
components in the input signal, and significantly de-
grades the high-frequency performance of sampling sys-
tems. These can be serious performance-limiting fac-
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tors in wideband high-precision data acquisition sys-
tems. In this paper, we discuss these effects explicitly –
not only in the case that sampling jitter and finite aper-
ture time exist individually, but also when they exist
together, for any aperture window function (which is
represented by a Fourier series or whose Fourier trans-
form exists) with Gaussian sampling jitter, and derive
some formulas to represent them. These results would
be useful for designing wideband sampling data acqui-
sition systems.

Section 2 studies sampling jitter effect problems,
and derives several formulas. Some experimental re-
sults as well as numerical simulation results are pro-
vided as validation of the analytical results. Section 3
discusses finite aperture time effects, and some formu-
las to represent them are derived. Section 4 presents
the effects of both sampling jitter and finite aperture
time together, and a general formula to represent them
is derived. Section 5 provides our conclusions.

2. Sampling Jitter Effects

In wideband high-precision sampling systems, sampling
jitter (sampling clock phase noise) is a crucial factor
which affects performance [4]–[12]. Consider a sinu-
soidal input

Vin(t) = A cos(2πfint)

and a sampling system which samples it at time t =
nTs + εn (Figs. 1 and 2), where Ts is the average
sampling period and εn is the sampling jitter, and
n = .. − 2,−1, 0, 1, 2, ..; we assume that εn follows a
Gaussian distribution of N(0, σ2

j ). Then we obtain a
sampling system output of Vout(nTs) = Vin(nTs + εn),

Fig. 1 A sampling system, where Vin(t) is an analog input and
Vout(n) is sampled output (n = ..−2,−1, 0, 1, 2, ...). It is assumed
that the sampling is performed during finite aperture time with
an aperture window, and the sampling clock has a period of Ts

with the sampling jitter εn.
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(a)

(b)

Fig. 2 (a) The sampling system in Fig. 1 samples a sinusoidal
input with a sampling period of Ts. (b) Error of the sampled
output due to the sampling jitter. When the sampling clock has
the sampling jitter εn at n-th clock period, the sampled output is
Vin(nTs+ εn) while the ideal output is Vin(nTs); hence the error
due to the sampling jitter is given by Vin(nTs + εn)− Vin(nTs).

and the error between the input and output is given by

Vout(nTs) − Vin(nTs) ≈ εn
dVin(t)

dt

∣∣∣
t=nT

(1)

where

2πfinσj � 1 (2)

is assumed. We see that the error is proportional to the
signal slew-rate dVin(t)/dt as well as the sampling jitter
εn. Therefore note that as the input signal frequency
fin increases, the sampling jitter effect becomes more
serious because the signal slew-rate is proportional to
fin, and hence in wideband sampling systems, the sam-
pling jitter is very problematic. M. Shinagawa et al.
showed in [6] that with the assumption of Eq. (2), the
error power due to the sampling jitter is given by

Pj = 2π2f2
inA

2σ2
j . (3)

Since the signal power of Vin is A2/2, SNR due to the
sampling jitter is given by

SNR = 10 log
A2/2

2π2f2
inA

2σ2
j

= −20 log(2πfinσj) [dB]. (4)

However for the very high input frequency fin, the as-
sumption given by Eq. (2) is not satisfied and hence
the above result cannot be applied to such a case. In

wideband sampling systems such as wideband digitiz-
ing oscilloscopes [1]–[3], and given σj , the input signal
frequency fin is usually too high for 2πfinσj � 1 to
hold.

In this section we derive exact formulas for the
error power due to the sampling jitter for almost any
input signal without assuming 2πfinσj � 1, and our
numerical simulations and some measurement results
validate these results. Then we discuss the relationship
between sampling jitter and quantization noise prob-
lems in ADC systems. These results can be useful for
wideband sampling system applications.

2.1 Sampling Jitter Effects for Sinusoidal Inputs

Let us consider the sampling jitter effect for a sinusoidal
input without the assumption of Eq. (2).
Time Domain Definition: We will define the error
power Pj due to the sampling jitter as follows:

Pj , E

[
lim

N→∞

1
N

N−1∑
n=0

[Vout(nTs) − Vin(nTs)]
2

]
.

(5)

Here E[x] denotes the ensemble average of x, and we
assume ergodicity for input and output signals.
Proposition 1: (i) The exact error power Pj due to
the sampling jitter for Vin(t) = A cos(2πfint) is given
by

Pj = A2
[
1 − exp(−2π2f2

inσ
2
j )
]
. (6)

Note that Pj depends on the input signal frequency
fin, but it does not depend on the sampling frequency
fs(= 1/Ts).
(ii) Since signal power is equal to A2/2, SNR is given
by

SNR = −10 log 2
(
1 − exp(−2π2f2

inσ
2
j )
)

[dB]. (7)

(iii) When 2πfinσj � 1,

Pj ≈ A2
[
1 − (1 − 2π2f2

inσ
2
j )
]

= 2π2f2
inσ

2
jA

2 (8)

which corresponds to the result in [6].
Note: (i) Our proof of Proposition 1 is given in Ap-
pendix A.
(ii) S. Awad derived the exact formula for the error
power due to the sampling jitter for a sinusoidal input
without assuming Eq. (2) [7].
(iii) The definition of the error power due to the sam-
pling jitter given in Eq. (5) is suitable for time domain
applications and this may be called the time domain
definition. However, we remark that the following fre-
quency domain definition is widely used, such as in the
ADC performance testing [12].
Frequency Domain Definition: (i) Error power
(Pfe) due to the sampling jitter is defined as the output
power of the total frequency components except for fin.
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(ii) Signal output power (Pfs) is defined as the output
power of the frequency component of fin.

Note that when we use this frequency domain def-
inition, as the finσj increases, the error power Pfe in-
creases and the signal power Pfs decreases. Also

Pfe + Pfs =
A2

2
(9)

always holds. This corresponds to the fact that in av-
erage the sampling jitter does not produce or lose any
power in the sampled output signal, and the average
input power and the average sampled output power are
equal. We note that the results in the time domain def-
inition of error power and signal power as well as SNR
due to the sampling jitter are different from those in the
frequency domain definition; when we use the time do-
main definition, the error power is given by Eq. (6) and
the signal output power is considered as A2/2 regardless
of fin and σj for Vin(t) = A cos(2πfint). In this paper,
however, since we target applications in time domain
waveform measurement instruments such as digitizing
oscilloscopes, we use the definition given by (5).

2.2 Sampling Jitter Effects for (Almost) Any Input
Signal

This section describes the error power and SNR due to
the sampling jitter for any input signal which is repre-
sented by a Fourier series or whose Fourier transform
exists.
Proposition 2: (i) When the input Vin(nTs) is pe-
riodic with a fundamental frequency of f0, it can be
represented by a Fourier series:

Vin(nTs) =
a0

2

+
N∑

k=1

[ak cos(2πkf0nTs)+bk sin(2πkf0nTs)] .

(10)

In this case, the error power Pj due to the sampling
jitter is given by

Pj =
N∑

k=1

(a2
k + b2k)

[
1 − exp(−2π2(kf0)2σ2

j )
]

(11)

Proof: See Appendix A.
(ii) Pj given by Eq. (11) is less than or equal to two
times of [input signal power—its DC power]):

Pj ≤ 2 ×
∞∑

k=1

(a2
k + b2k). (12)

In other words, when a0 = 0, Pj ≤ 2× [input signal
power] and hence SNR due to the sampling jitter ap-
proaches −3 dB as 2πf0σj increases. This can be ex-
plained as follows:

Pj = E
[
(Vout − Vin)2

]
= E[V 2

out] − 2E[VoutVin] + E[V 2
in], (13)

where E[V 2
out] = E[V 2

in] and as σj increases, E[VoutVin]
(correlation between Vout and Vin) approaches zero,
and hence Pj approaches 2 × E[V 2

in].
This idea can be extended to any stationary in-

put signal which is not necessarily periodic but whose
Fourier transform exists (

∫∞
−∞ |Vin(t)|dt < ∞ ).

Proposition 3: (i) Suppose that the Fourier trans-
form of Vin(t) is F (jω), then the error power Pj due to
the sampling jitter is given by

Pj =
1
π

∫ ∞

−∞
|F (jω)|2

(
1−exp

(
−
ω2σ2

j

2

))
dω. (14)

Proof: See Appendix B.
(ii) According to the Parceval’s theorem [14], the signal
power is given by

S =
1
2π

∫ ∞

−∞
|F (jω)|2 dω. (15)

Hence SNR approaches −3 dB as σj increases.
Note: In general Fourier series analysis can be used
for a periodic signal whose fundamental frequency is
f0, while Fourier transform analysis can be used for
stationary signals which are not necessarily periodic.

2.3 Numerical Simulation

We have performed numerical simulations to validate
the above results with the following four input signals.
Example 1: Sinusoidal input:

Vin(nTs) = cos(2πfinnTs) (16)

Figures 3(a) and (b) show the calculated results (based
on Eqs. (6) and (7)) and the simulation results for the
error power and SNR due to the sampling jitter for
102, 400 samples.
Example 2: Square-wave signal approximation:

Vin(nTs) =
4
π

40∑
k=1

[ak cos(2πkf0nTs)] , (17)

where

ak =
{

1/k (k: odd)
0 (k: even).

Example 3: Triangular-wave signal approximation:

Vin(nTs) =
8
π2

30∑
k=1

[bk cos(2πkf0nTs)] , (18)

where

bk =
{

(−1)(k−1)/2/k (k: odd)
0 (k: even).
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(a)

(b)

Fig. 3 (a) The calculation (based on Eq. (6)) and simulation
results for the error power due to the sampling jitter versus
2πfinσj with a sinusoidal input of Vin(t) = cos(2πfint) for
102,400 samples. (b) The calculation (based on Eq. (7)) and sim-
ulation results for SNR due to the sampling jitter with a sinu-
soidal input of Vin(t) = cos(2πfint) for 102,400 samples.

Example 4: Saw-wave signal approximation:

Vin(nTs) =
2
π

60∑
k=1

[
(−1)k+1

k
cos(2πkf0nTs)

]
. (19)

Figures 4(a), 5(a) and 6(a) illustrate the input wave-
forms of Examples 2, 3 and 4 respectively. Figures 4(b),
4(c), 5(b), 5(c), 6(b) and 6(c) show the calculated re-
sults (based on Eq. (11)) and the simulation results for
the error power and SNR due to the sampling jitter
with 102, 400 samples. We see that, for all of Examples
1, 2, 3 and 4, numerical simulations of the error power
due to the sampling jitter match well with Eq. (6) or
(11), and SNR approaches −3 dB as finσj and f0σj

increase.

2.4 Experimental Results

This subsection describes experimental results for the
formula in Eq. (6) of sampling jitter effects for a si-
nusoidal input. Figure 7 shows the measurement

(a)

(b)

(c)

Fig. 4 (a) Waveform of Vin(t) given by Eq. (17). (b) The cal-
culation (based on Eq. (11)) and simulation results for the error
power due to the sampling jitter versus 2πf0σj with a square-
wave-like input of Eq. (17) for 102,400 samples. (c) The calcula-
tion (based on Eq. (11)) and simulation results for SNR due to
the sampling jitter with a square-wave-like input of Eq. (17) for
102,400 samples.

setup, where we use two frequency synthesizers (An-
ritsu 69147B and Anritu MG3601) which are synchro-
nized. The input signal to the sampling oscilloscope is
from one synthesizer (Anritsu 69147B) whose output
is frequency-modulated while its trigger signal is from
the other synthesizer (Anritu MG3601) whose output
is not frequency-modulated, and the carrier frequency
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(a)

(b)

(c)

Fig. 5 (a) Waveform of Vin(t) given by Eq. (18). (b) The cal-
culation (based on Eq. (11)) and simulation results for the error
power due to the sampling jitter versus 2πf0σj with a triangular-
wave-like input of Eq. (18) for 102,400 samples. (c) The calcu-
lation (based on Eq. (11)) and simulation results for SNR due
to the sampling jitter with a triangular-like input of Eq. (18) for
102,400 samples.

(center frequency) of the former synthesizer (Anritsu
69147B) output is identical to the frequency of the lat-
ter synthesizer (Anritu MG3601) output. The variation
of the input waveforms due to the jitter caused by the
frequency modulation is recorded on the sampling oscil-
loscope (HP54750A); it performs equivalent-time sam-
pling using so-called a sequential sampling method [1]

(a)

(b)

(c)

Fig. 6 (a) Waveform of Vin(t) given by Eq. (19). (b) The cal-
culation (based on Eq. (11)) and simulation results for the error
power due to the sampling jitter versus 2πf0σj with a saw-wave-
like input of Eq. (19) for 102,400 samples. (c) The calculation
(based on Eq. (11)) and simulation for SNR due to the sampling
jitter with a saw-wave-like input of Eq. (19) for 102,400 samples.

where each sampling pulse is generated sequentially by
a fine time resolution step for the corresponding trigger
with the timing reference of the trigger timing point.
Figure 8 shows examples of measured waveforms with
the jitter, and we see that larger errors are observed
as the jitter increases. Figure 9 shows an example of
measured jitter histogram and acquired data, and note
in Fig. 9 that the waveform recorded at the center be-
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Fig. 7 Measurement setup for sampling jitter effects.

Fig. 8 Examples of measured waveforms with sampling jitter.

tween them corresponds to the reference input signal
which is not frequency-modulated. We have calculated
errors due to the sampling jitter by subtracting the
measured data with frequency modulation from that
without frequency modulation, and performed statis-
tical calculations for them. Figure 10 shows the mea-
sured error power (“experiment” in the graph) and the
calculated error power based on Eq. (6) (“new formula”
in the graph and that based on Eq. (3) (“previous for-
mula” in the graph). We see that the measured error
power (“experiment”) matches well with the calculated

Fig. 9 Example of jitter histogram and acquired data.

Fig. 10 Measured error power due to the sampling jitter (“ex-
periment”), calculated error power based on Eq. (6) (“new for-
mula”) and calculated error power based on Eq. (3) (“previous
formula”).

error power based on Eq. (6) (“new formula”) in all re-
gions. On the other hand, the measured error power
(“experiment”) matches well with the calculated error
power based on Eq. (3) (“previous formula”) only in the
region where the sampling jitter is small. Hence it is
confirmed experimentally that the formula of Eq. (6) is
superior to that of Eq. (3).

2.5 Sampling Jitter and Quantization Noise

An analog-to-digital converter (ADC) performs quanti-
zation operations as well as sampling operations for an
analog input signal and hence it produces quantization
noise [12]. In this subsection, we study the relation-
ships between quantization noise and error power due
to the sampling jitter.
Proposition 4: Letting input signal power = S,
quantization noise power = Q, and
error power due to sampling jitter = Pj ,
then we obtain the SNR of the ADC as follows:

SNR = 10 log
S

Q + Pj
[dB]. (20)

This is because the quantization noise and the error
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due to the sampling jitter are statistically independent,
and hence their powers can be added to obtain the total
noise power.
Note: (i) We have validated Proposition 4 by numeri-
cal simulation. See [11].
(ii) Calculation formula of Q for an n-bit ADC is well-
known [12], and hence Eq. (20) with Eq. (11) gives the
SNR formula of an ADC for any input signal with re-
spect to quantization and sampling jitter.

3. Finite Aperture Time Effects

This section describes finite aperture time effects in
wideband sampling systems (Fig. 1). Ideally the sam-
pling should be performed instantaneously at time t,
however it takes some finite time during (t− (∆t)/2 ∼
t+(∆t)/2), and we call ∆t the aperture time. Suppose
that a sampling system samples the input Vin(t) with
a finite aperture time ∆t (Fig. 11), and then its output
is given by

Vout(t) =
∫ ∆t/2

−∆t/2

g(τ )Vin(t + τ )dτ (21)

where g(τ ) is a weighting function and we call it the
aperture window [13]. Now we define the error power
Pa due to the finite aperture time ∆t as follows:

Pa,E

[
lim

N→∞

1
N

N−1∑
n=0

(Vout(nTs)−Vin(nTs))2
]
.

(22)

We assume here that the signal is stationary and er-
godic.
Proposition 5: When the input signal is sinusoidal,
given by Vin(t) = A cos(2πfint), then the error power

Fig. 11 Finite aperture time and aperture window in sampling
operation.

Pa due to the finite aperture time ∆t and aperture win-
dow g(τ ) is given by

Pa =
A2

2
|1 −G(jω)|2ω=2πfin

(23)

where G(jω) is the Fourier transform of g(τ ):

G(jω) ,
∫ ∞

−∞
g(t) exp(−jωt)dt, (24)

Proof: See Appendix A.
We have considered the following three examples and
performed numerical simulations of sampling systems
with aperture windows. We have confirmed that the
simulated error power defined in Eq. (22) and the cal-
culated error power based on Eq. (23) match very well
for all three cases; for 2πfin∆t(= ω∆t) = 1.5 × 10−3,
fin/fs = 5.0 × 10−4 and A = 1, the error power in
Example 5 is 7.4 × 10−16 and that in Example 6 is
1.2 × 10−15 while that in Example 7 is 3.9 × 10−10.
These were obtained in both simulation and numerical
calculation cases.
Example 5: When the aperture window g(τ )
(Fig. 12(a)) and its Fourier transform G(jω) are given
by

g(τ ) =

{
1
∆t (−∆t

2 ≤ τ ≤ ∆t
2 )

0 (otherwise)
(25)

Fig. 12 Aperture windows. (a) Example 5. (b) Example 6.
(c) Example 7.
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G(jω) = sinc
(ω∆t

2

)
. (26)

Here

sinc(x) ,
sin(x)

x
. (27)

Then the error power Pa is given by

Pa =
A2

2

∣∣∣∣1 − sinc
(ω∆t

2

)∣∣∣∣
2

. (28)

Example 6: When the aperture window g(τ )
(Fig. 12(b)) and its Fourier transform G(jω) are given
by

g(τ ) =




2
∆t + ( 2

∆t )
2τ (−∆t

2 ≤ τ ≤ 0)
2
∆t − ( 2

∆t )
2τ (0 ≤ τ ≤ ∆t

2 )
0 (otherwise)

(29)

G(jω) = 2
( 2
ω∆t

)2
(

1 − cos
(ω∆t

2

))
. (30)

Then the error power Pa is given by

Pa =
A2

2

∣∣∣∣1 − 2
( 2
ω∆t

)2
(

1 − cos
(ω∆t

2

))∣∣∣∣
2

. (31)

Example 7: When the aperture window g(τ )
(Fig. 12(c)) and its Fourier transform G(jω) are given
by

g(τ ) =

{
2
∆t cos2( π

∆tτ ) (−∆t
2 ≤ τ ≤ ∆t

2 )
0 (otherwise)

(32)

G(jω)=

[
1−
(

1−
( 2π
ω∆t

)2
)−1

]
sinc

(ω∆t

2

)
. (33)

Then the error power Pa is given by

Pa =
A2

2

∣∣∣∣∣1−
[
1−
(

1−
( 2π
ω∆t

)2
)−1

]
sinc

(ω∆t

2

)∣∣∣∣∣
2

.

(34)

4. Combined Effects of Sampling Jitter and Fi-
nite Aperture Time

In this section we will discuss the sampling jitter and
finite aperture time effects on wideband sampling sys-
tems when both exist together.
Proposition 6: (i) When the input signal is si-
nusoidal given by Vin(t) = A cos(2πfint), and the
sampling system has the finite aperture time ∆t and
the aperture window g(τ ) (whose Fourier transform
is G(jω)) with the sampling jitter εn which follows a
Gaussian distribution of N(0, σ2

j ), then the total error
power is given by as follows:

PN =
A2

2
|1 −G(jω)|2

+ G(ω)R ·A2
(
1 − exp(−2π2f2

inσ
2
j )
)
, (35)

where G(ω)R is the real part of G(jω).
Proof: See Appendix A.
(ii) When the input Vin(nTs) is given by a Fourier series
(Eq. (10)), then the error power PN due to the sampling
jitter and the finite aperture time is given by

PN =
N∑

k=1

a2
k + b2k

2

{
|1 −G(j2πkf0)|2

+ 2GR(2πkf0)
[
1 − exp

(
−2π2(kf0)2σ2

j

)]}
.

(36)

Proof: See Appendix A.
(iii) When the input signal is stationary and its Fourier
transform F (jω) exists, then the noise power PN due
to the sampling jitter and finite aperture time is given
by

PN =
1

2π

∫ ∞

−∞
|F (jω)|2

[
|1 −G(jω)|2

+ 2GR(ω)
(

1 − exp
(
−
ω2σ2

j

2

))]
dω. (37)

Proof: See Appendix B.
Note: Equations (35), (36) and (37) can be rewritten
as follows:

Total error power due to
finite aperture time and sampling jitter

= (error power due to finite aperture time)
+ GR(ω) × (error power due to sampling jitter).

This can be interpreted as follows: the input signal is
filtered by G(jω) of the finite aperture function and its
output amplitude is multiplied by GR(ω). Then the
error power due to the sampling jitter is given by

GR(ω) × (error power due to sampling jitter).

5. Conclusion

We have described the effects of sampling jitter and
finite aperture time on wideband data acquisition sys-
tems, and we have explicitly derived several formulas
for their effects. Numerical simulations and some ex-
perimental results have validated our results. These
would be useful for the designer of wideband sampling
data acquisition systems to know how much sampling
jitter and aperture time are tolerable for a specified
SNR.
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Appendix A: Proof of Propositions 1, 2 (i), 5,
6 (i) and 6 (ii)

This appendix gives the proof of Propositions 1, 2 (i),

5, 6 (i) and 6 (ii). First we will consider the following
case in Eq. (10), and prove Eq. (11), using Eq. (6) and
the orthogonal property of sine and cosine functions.

Vin(t) , a1 cos(ω1t) + a2 cos(ω2t),

=
1
2
a1

[
ejω1t + e−jω1t

]
+

1
2
a2

[
ejω2t + e−jω2t

]
where ω1 , 2πk1f0, ω2 , 2πk2f0, and k1 
= k2. Then
if both the sampling jitter and the finite aperture time
exist, the output is given as follows:

Vout(nTs)

=
∫ ∞

−∞
g(τ )

[
a1 cos (ω1(nTs + τ + εn))

+ a2 cos (ω2(nTs + τ + εn))
]
dτ

=
1
2

∫ ∞

−∞
g(τ )

(
a1

[
ejω1(nTs+τ+εn))+e−jω1(nTs+τ+εn)

]
+ a2

[
ejω2(nTs+τ+εn) + e−jω2(nTs+τ+εn)

])
dτ

=
a1

2

[
G(jω1)ejω1(nTs+εn) + G(−jω1)e−jω1(nTs+εn)

]
+

a2

2

[
G(jω2)ejω2(nTs+εn)

+G(−jω2)e−jω2(nTs+εn)
]
.

Then we obtain the following:

(Vout(nTs)−Vin(nTs))2 =P1(n)+P2(n)+P3(n),

where

P1(n) ,
a2
1

4

[
ej2ω1nTs

{
G(jω1)ejω1εn − 1

}2
+ e−j2ω1nTs

{
G(−jω1)e−jω1εn − 1

}2
+ 2

∣∣G(jω1)ejω1εn − 1
∣∣2],

P2(n) ,
a2
2

4

[
ej2ω2nTs

{
G(jω2)ejω2εn − 1

}2
+ e−j2ω2nTs

{
G(−jω2)e−jω2εn − 1

}2
+ 2

∣∣G(jω2)ejω2εn − 1
∣∣2],

P3(n) ,
a1a2

4

×
[
ej(ω1+ω2)nTs{G(jω1)ejω1εn−1}

· {G(jω2)ejω2εn−1} + ej(ω1−ω2)nTs

· {G(jω1)ejω1εn−1}{G(−jω2)e−jω2εn−1}
+ ej(−ω1+ω2)nTs{G(−jω1)e−jω1εn−1}
· {G(jω2)ejω2εn−1} + e−j(ω1+ω2)nTs

· {G(−jω1)e−jω1εn−1}{G(−jω2)e−jω2εn−1}
]
.
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Then the total error power due to the sampling jitter
and the finite aperture time is give by

PN , E

[
lim

N→∞

1
N

N−1∑
n=0

(Vout(nTs) − Vin(nTs))
2

]

= E

[
lim

N→∞

1
N

N−1∑
n=0

(P1(n) + P2(n) + P3(n))
]
.

Here

E

[
lim

N→∞

1
N

N−1∑
n=0

P1(n)
]

=
a2
1

2
E
[∣∣G(jω1)ejω1εn − 1

∣∣2]
=

a2
1

2

[
|1−G(jω1)|2+2GR(ω1)(1−e−ω2

1σ2
j /2)

]
.

E

[
lim

N→∞

1
N

N−1∑
n=0

P2(n)
]

=
a2
2

2
E
[∣∣G(jω2)ejω2εn − 1

∣∣2]
=

a2
2

2

[
|1−G(jω2)|2+2GR(ω2)(1−e−ω2

2σ2
j /2)

]
.

E

[
lim

N→∞

1
N

N−1∑
n=0

P3(n)

]
= 0.

Therefore

PN =
a2
1

2

[
|1 −G(jω1)|2

+2GR(ω1)(1 − e−ω2
1σ2

j /2)
]

+
a2
2

2

[
|1 −G(jω2)|2

+2GR(ω2)(1 − e−ω2
2σ2

j /2)
]
.

Here GR(ω) is the real part of G(jω). Note that εn fol-
lows a Gaussian distribution N(0, σj) and in the above
proof, the followings are used [15]

E [cos(ωεn)] = exp
(
−
ω2σ2

j

2

)
(A· 1)

E [sin(ωεn)] = 0 (A· 2)

as well as Lemma 1. We note that extension of the proof
to a general N (i.e., Propositions 6 (ii)) is straight-
forward. Also Proposition 1 can be proved by letting
g(t) = δ(t) and a2 = 0, and Proposition 2 (i) can be
proved by letting g(t) = δ(t) while Proposition 5 can
be proved by letting σj = 0.
Lemma 1: When α 
= β, as T → ∞,

(i)
1
T

∫ T

0

cos(αt) cos(βt)dt → 0,

(ii)
1
T

∫ T

0

sin(αt) sin(βt)dt → 0,

(iii)
1
T

∫ T

0

cos(αt) sin(βt)dt → 0.

Proof of Lemma 1: We will prove Lemma 1 (i) here,
and Lemma 1 (ii) and (iii) will be proved in a similar
manner. When α 
= β,

1
T

∫ T

0

cos(αt) cos(βt)dt

=
1

2T

∫ T

0

{cos((α + β)t) + cos((α− β)t)} dt

=
1
2

[
sin((α + β)T )

(α + β)T
+

sin((α− β)T )
(α− β)T

]
→ 0,

as T → ∞.

Appendix B: Proof of Propositions 3 (i) and 6
(iii)

This appendix gives the proof of Propositions 3 (i) and
6 (iii). When the Fourier transform F (jω) of Vin(t)
exists,

F (jω) ,
∫ ∞

−∞
Vin(t)e−jωtdt,

then

Vin(nTs) =
1

2π

∫ ∞

−∞
F (jω)ejωnTsdω.

If both the sampling jitter and the finite aperture time
exist, the output Vout(nTs) is given by

Vout(nTs)

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
g(τ )F (jω)ejω(nTs+τ+εn)dωdτ

=
1
2π

∫ ∞

−∞
G(−jω)F (jω)ejω(nTs+εn)dω.

Then the total error power to the sampling jitter and
finite aperture time is given by follows:

E

[
lim

N→∞

1
N

N−1∑
n=0

(Vout(nTs) − Vin(nTs))2
]

=
1
2π

E

[
lim

N→∞

1
N

N−1∑
n=0

{∫ ∞

−∞
F (jω)

× ejωnTs [G(jω)ejωεn − 1]dω
}2
]

=
1

(2π)2
E

[
lim

N→∞

1
N

N−1∑
n=0

∫ ∞

−∞

∫ ∞

−∞
F (jω)F (−jω′)

× [G(−jω)ejωεn − 1][G(−jω′)ejω′εn − 1]∗dωdω′



KOBAYASHI et al.: SAMPLING JITTER AND FINITE APERTURE TIME EFFECTS
345

=
1
2π

E

[∫ ∞

−∞

∫ ∞

−∞
F (jω)F (−jω′)

× [G(−jω)ejωεn − 1][G(−jω′)e−jω′εn − 1]∗

× 1
2π

lim
N→∞

1
N

N−1∑
n=0

ej(ω−ω′)nTs

]
dωdω′

=
1
2π

E

[∫ ∞

−∞

∫ ∞

−∞
F (jω)F (jω′)∗

× [G(jω)ejωεn − 1][G(−jω′)e−jω′εn − 1]∗

× δ(ω − ω′)
]
dωdω′

=
1
2π

E

[∫ ∞

−∞
|F (jω)|2

× [G(jω)ejωεn − 1][G(−jω)e−jωεn − 1]∗
]
dω

=
1
2π

∫ ∞

−∞
|F (jω)|2

×
[
|G(jω)|2 + 1 − 2GR(ω)E [cos(ωεn)]

]
dω

=
1
2π

∫ ∞

−∞
|F (jω)|2 ×

{
|1 −G(jω)|2

+ 2GR(ω)

[
1 − exp

(
−
ω2σ2

j

2

)]}
dω. (A· 3)

Here GR(ω) is the real part of G(jω), and in the above
proof,

1
2π

lim
N→∞

1
N

N−1∑
n=0

ej(ω−ω′)nTs = δ(ω − ω′)

as well as Eqs. (A· 1) and (A· 2) are used [14], [15]. Thus
Proposition 5 (iii) has been proved.

To prove Proposition 3(i), let g(t) = δ(t), and then
G(jω) = 1 and hence Eq. (A· 3) yields to

Pj =
1
π

∫ ∞

−∞
|F (jω)|2

(
1 − exp

(
−
ω2σ2

j

2

))
dω.

Then Proposition 3 (i) has been proved.
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