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SUMMARY This paper proposes a quasi-coherent equivalent-
time sampling method to acquire repetitive wideband waveform sig-
nals with high throughput. We have already proposed a new sampling
system which incorporates the pre-trigger ability and the time jitter
reduction function for a fluctuated input signal while maintaining the
waveform recording efficiency. The quasi-coherent sampling method
proposed in this paper can be adopted to it in order to improve its data
acquisition throughput significantly. Numerical simulation results show
effectiveness of our proposed method.
key words:  equivalent-time sampling, coherent sampling, Brocot
space, high time-resolution, data recording time

1. Introduction

Equivalent-time sampling is a well-known technique to cap-
ture repetitive signals at finer time intervals than a sampling
clock period and it is widely used in waveform measurement
systems with high time-resolution (such as a wideband digi-
tal storage oscilloscope (DSO)). There are three techniques
for implementing its time base (i.e., sequential sampling, ran-
dom sampling [1] and coherent sampling [2]), and they have
their respective advantages and disadvantages. In [3], we have
already proposed a new sampling system which incorporates
the pre-trigger ability and the time jitter reduction function
for a fluctuating input signal which a random sampling sys-
tem has, while maintaining the waveform recording efficiency
which a conventional coherent sampling system has. Hence,
the sampling system proposed in [3] has characteristics of
both random and coherent samplings, which would be useful
to implement wide-band high-throughput DSOs. However
improvements in the coherent sampling part still need to be
made. In this paper we propose a new concept of “quasi-
coherent sampling” which will further improve data sampling
throughput taking into account the time required for chang-
ing a clock period.

In Sect. 2, our previously proposed method of coherent
sampling with a time interpolator [3] is briefly reviewed. In
Sect. 3, its problem is addressed and our new concept of
“quasi-coherent sampling” is introduced to overcome it. In
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Sect. 4, we redefine the three sampling states (coherent, quasi-
coherent and incoherent sampling states) to enable to deter-
mine the sampling state quantitatively. In Sect. 5, a new al-
gorithm using the Brocot space theory is proposed to deter-
mine effectively whether the sampling is in the quasi-coher-
ent state or not, and in Sect. 6, the validity of the algorithm is
shown by numerical simulation. In Sect. 7, the numerical
simulation results show the effectiveness of our sampling
method as a whole; its throughput is approximately twice
compared to the previously proposed method. Section 8 pro-
vides conclusion.

2. Coherent Sampling with a Time Interpolator

Before discussing the main subject, we will describe the op-
eration of a coherent sampling method with a time interpola-
tor [3] in Fig. 1 and its relational expression in Eq. (1). Also
we will define some terms to be used. Figure 1 shows that a
repetitive input signal waveform is measured with a time reso-
lution of one-third of the clock period, and three time bins
are provided in a clock period. Here, data is sampled at 8
points per two signal periods. Tc is a clock period and Thold
is duration of a holdoff, which becomes valid (high) incident
to the trigger input and inhibits the next trigger input until it
becomes invalid (low). Tsi (i=1,2,3..) is a time difference
between the time at which the holdoff is generated and a sub-
sequent clock-edge-rising-timing, and it is called “time in-
terpolation data.” A holdoff period Trr is expressed by Eq.
(1) and is obtained by measuring the values of the successive
Tsi’s and counting the number of clock periods.

Trr=Tt×Ceiling[Thold/Tt]=K×Tc – δTsi (1)

where, Ceiling[x] is a minimum integer equal to or greater
than x, and K is the number of clock periods within Trr. Also
δTsi (defined as δTsi =Tsi+1–Tsi) is the time difference be-
tween successive ith and (i+1)th time interpolation data.

Note that the state where the condition of Eq. (2) holds
between Tc and Trr is called a “coherent sampling state.”

Tc/Trr=M/N (2)

where, N (=8 in Fig. 1) is the number of clock periods re-
quired to collect data, M (=3 in Fig. 1) is the number of time
bins, which corresponds to the amount of data sampled per
one clock period, and N and M are relatively prime integers.
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3. Quasi-Coherent Sampling

When we adopt the above-mentioned coherent sampling
method for a repetitive input signal whose period fluctuates,
the period of the sampling clock has to be adjusted according
to the input signal period. However, the settling time of a
very stable oscillator (e.g. its rms jitter < 0.5ps implemented
with a voltage controlled crystal oscillator (VCXO), which
is required for high time-resolution measurement) is relatively
long (several tens of milli-seconds in this example) and hence
the system throughput for data acquisition is degraded. Also,
precise oscillation frequency adjustment to satisfy the coher-
ent condition is very difficult. This is because the “control
voltage versus oscillation frequency” of the VCXO has non-
linear characteristics and an oscillator using PLL has a finite
frequency setting resolution. To overcome this problem, we
will consider and define three sampling states for the rela-
tionships between the sampling clock period Tc and the
holdoff period Trr which is a multiple of the input signal pe-
riod:

(1) Coherent sampling state: Trr and Tc satisfy the relation-
ships in Eq. (2). In this case, the efficiency of obtaining time
interpolation data of all time bins is very high (=100%).
Definition of “Coherent Sampling” If all of M time bins
are filled out with Tsi measurements by M times, it is defined
to be in the coherent sampling state.

(2) Quasi-coherent sampling state (newly introduced concept):
The relationships between Trr and Tc are moderately appro-
priate and “bunched waveform phenomena” [4], [7], [8] do
not occur. In such a state, the efficiency may not be as high
as in the coherent state, but it is fairly high and the period of
the sampling clock needs not to be changed.
Definition of “Quasi-Coherent Sampling” If M time bins
are filled out with Tsi measurements by n×M times (where
n>1 and n is a reasonably small positive number), it is de-
fined to be in the quasi-coherent sampling state.

(3) Incoherent sampling state: The relationships between Trr
and Tc are not appropriate and bunched waveform phenom-
ena occur. Hence in this case the efficiency  is not good and
the period of the sampling clock should be changed.
Definition of  “Incoherent Sampling” If M time bins are
not filled out with Tsi measurements by n×M times (where
n>1 and n is a reasonably small positive number), it is de-
fined to be in the incoherent sampling state.

Figure 2 explains these three sampling states conceptu-
ally; the top part shows the coherent sampling case and the
middle part shows the quasi-coherent sampling case while
the bottom part shows the incoherent sampling case where
some bins are not filled out.
Remark: Figure 3 shows an example of the bunched wave-
form phenomena or waveform missing phenomena in a DSO
for a sinusoidal input signal. We see that some parts of the
sinusoidal signal is not displayed in a DSO, and this happens
when the input signal repetition period and the holdoff pe-
riod Trr satisfy some conditions. The details of their mecha-
nism and countermeasures are described in [4], [7], [8].

Fig. 1 Data acquisition flow of a coherent sampling system with a time interpolator [3].

Fig. 2 Conceptual explanation of coherent sampling (top), quasi—
coherent sampling (middle) and incoherent sampling (bottom).  In co-
herent sampling, all of M (=8) bins are filled out with M (=8) samples,
while in quasi-coherent sampling, they are filled out with n × M (=11)
samples where n is greater than one and is a reasonably small positive
number (n=1.375 in this example). In incoherent sampling, all of M
bins are not filled out even with a large number of samples, and the
bins which are not filled out cause “bunched waveform phenomena”
or “waveform missing phenomena.”
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4. Quasi-Coherent Sampling and Time Interpolation
Data (δδδδδTsi)

For the coherent sampling at the top in Fig. 2, since δTsi/
Tc=(odd integer)/8, (that is, the numerator and denominator
are relatively prime integers), it is possible to determine quan-
titatively using δTsi/Tc, whether it is in the coherent sam-
pling state. However, for the quasi-coherent sampling state,
it is not obvious. Thus, we will redefine these sampling states
as follows to enable to determine quantitatively whether it is
in the quasi-coherent sampling state:
Redefinition of “Coherent Sampling” Collect time inter-
polation data Tsi by M (=8 in Fig. 2) times and put the data in
the ascending order. If a maximum value ∆Ts_max of the
difference between adjacent terms in this progression is not
more than Tc/M, then it is defined as in the coherent sam-
pling state.
Redefinition of “Quasi-Coherent Sampling” Collect Tsi
by n×M (n>1) times and put their data in the ascending  or-
der. If a maximum value ∆Ts_max of the difference between
adjacent terms in this progression is not more than Tc/M, it is
defined as in the quasi-coherent sampling state.

Figure 4 shows δTsi/Tc (on the x-axis (1/4 ≤ x ≤ 1/2)
versus ∆Ts_max/Tc (on the y-axis) for M=8 and n=1, 2, 3.
With an x value in the area of y > 1/M (=1/8), there are some
time bins in which data are not filled during n×M time inter-
polation data samplings, which yields to be in the incoherent
sampling state.
(1) In case n=1 (8 times of Tsi samplings):
For y=1/8 at x=3/8, it is in the coherent sampling state. With
other x values, y>1/8 and there are some time bins where
data are not filled out.
(2) In case n=2 or 3 (16 or 24 times of Tsi samplings):
There are some quasi-coherent sampling areas for y<1/8, and
there all time bins are filled out by data with n×M times Tsi
measurements. Note that the peaks in the area of y ≥ 1/8 co-
incide with n=1 case.

Dots and line segments in Fig. 5 show the regions of
δTsi/Tc’s values for n=1, 1.5, 2, 2.5, 3 and M=8, where
∆Ts_max/Tc is equal to or less than 1/M (i.e. the sampling is
in the coherent or quasi-coherent state). We have calculated
δTsi/Tc’s from 0 to 1 by a 1/256 step, and the difference be-
tween n=1 (coherent) and n>1 (quasi-coherent) lies in that in
the former case, δTsi/Tc’s are located as “points” such as δTsi/
Tc = 1/8, 3/8, 5/8 and 7/8, while in the latter case they are as
“line segments”; this is a nice feature of the quasi-coherent
sampling, presenting the ability to maintain a constant clock
period regardless of setting errors of the clock period and
slight fluctuations in the signal period, and this is why we
have introduced here the new concept of “quasi-coherent sam-
pling state.” Figure 6 shows an example of captured wave-
forms in the coherent, quasi-coherent and incoherent sam-
pling states to help the reader to understand the three sam-
pling states intuitively.

However, in some practical applications, it takes con-
siderable time to calculate ∆Ts_max. For example, with a
wideband data sampling apparatus with a high time-resolu-

Fig. 3 Example of bunched waveform phenomena or waveform miss-
ing phenomena for a sinusoidal input in a DSO. Some waveform parts
are missing in the DSO display when the input signal period and the
holdoff period satisfy some conditions.

Fig. 4 Redefinition of the coherent sampling state (regions of δTsi/
Tc’s where ∆Ts_max/Tc=1/M (i.e., y=1/8)), the quasi-coherent sampling
state (regions of δTsi/Tc’s where ∆Ts_max/Tc <1/M), and the incoher-
ent sampling state (regions of δTsi/Tc’s >1/M where ∆Ts_max/Tc > 1/
M).

Fig. 5 Coherent (n=1) and quasi-coherent (n>1) sampling regions with
respect to δTsi/Tc value. Dots and line segments show the regions of
δTsi/Tc’s values for n=1, 1.5, 2, 2.5, 3 and M=8, where the sampling is
in a coherent or quasi-coherent state.
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tion of 1ps at a 100 MHz clock rate, M amounts to 10,000
(=10 ns/1 ps). To determine whether the quasi-coherent state
condition for n=2 is satisfied or not, it is required to generate
20,000 Tsi’s, put them in the ascending order, calculate dif-
ferences between adjacent terms and find their maximum
value. To overcome this calculation complexity, we will pro-
pose a new algorithm which simplifies this calculation sig-
nificantly in the next section.

5. Brocot Space and Expansion of Continued Fractions

A Brocot space [5] is known as a means of illustrating whether
the operation of a sampling system is extremely close to a
coherent sampling state or not [6]. We consider that this space
is also effective in determining whether the sampling is in
the quasi-coherent state, and we will show an example with
M=8 and n=2:

Figure 7 shows irreducible fractions in n×M th (=16th)

order Brocot space in 1/4–1/2 range sequentially connected
with solid lines. We see that these solid lines have the same
shape as that of the lines for n=2 in Fig. 4. Similarly, the lines
for n=1 in Fig. 4 match the dotted lines connecting irreduc-
ible fractions in up-to-8th order Brocot space in Fig. 7. In
general, ∆Ts_max/Tc can be obtained by sequentially con-
necting fractions in the n×Mth order Brocot space when n×M
time interpolation data pieces are sampled for each δTsi/Tc.
From these observations, we have obtained the followings:
(1) If the denominator of δTsi/Tc takes a value between M
and n×M, it is in the coherent or quasi-coherent sampling
state.
(2) If the denominator of δTsi/Tc takes a value less than M, it
results in the incoherent sampling state.
(3) If ∆Ts_max/Tc of δTsi/Tc has a denominator larger than
n×M, it takes a value between the ∆Ts_max/Tc’s of two adja-
cent irreducible fractions not greater than n×M.

Any rational number can be expressed by an irreducible
fraction. Therefore, a simple evaluation method of δTsi/Tc
whether its denominator is greater than n×M would enable to
quickly determine, for arbitrary δTsi, whether the sampling
is in the quasi-coherent state. As a trial, we have expanded
δTsi/Tc into continued fractions expressed by Eq. (3) and fo-
cused on denominator(s) qn’s of convergents expressed by
Eq. (4).

δTsi

Tc
a

a
a

an

= +
+

+ ⋅⋅ ⋅

+

0

1
2

1
1
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qn=anqn-1+qn-2 (4)

 As a result, we have observed one regular pattern. Figure 8
shows ∆Ts_max/Tc versus δTsi/Tc with a denominator 43 of
δTsi/Tc expressed by black circles on the line segments of
n=2 in Fig. 4. The first and third δTsi/Tc’s from the left of the
section enclosed by dotted lines do not satisfy a quasi-coher-
ent sampling state, while the second, fourth, fifth and sixth
δTsi/Tc’s satisfy it.

Figure 9 shows plots of convergents values obtained by
expanding the above 6 δTsi/Tc’s into continued fractions. The
rectangular blocks of dotted lines indicate positions of frac-

Fig. 6 Example of captured waveforms in the coherent (top), quasi-
coherent (middle) and incoherent (bottom) sampling states. Each num-
ber corresponding to the dot shows the capture order of the data; the
dot labeled “i” is captured in the i-th order.

Fig. 7 Relationship between Brocot space and ∆Ts_max/Tc.
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tions whose denominators are 8 and 16. δTsi/Tc’s with a de-
nominator of 43 circled by dotted lines (15/43, 17/43) reach
their final values without passing the convergents inside the
rectangular block in expansion of continued fractions. On
the other hand, δTsi/Tc’s with a denominator of 43 circled by
solid lines (16/43, 18/43, 19/43, 20/43) reach their final val-
ues through the convergents inside the rectangular block in
expansion of continued fractions. From the above observa-
tions, we have deduced the following hypothesis:

“If a convergent denominator of δTsi/Tc passes between
M and n×M, the sampling corresponding to such a value of
δTsi/Tc is in the quasi-coherent state.”

6. Verification of Hypothesis

Supposing n=2, we have performed numerical calculations
of ∆Ts_max/Tc for various types of M and δTsi/Tc to deter-
mine whether the quasi-coherent sampling state is in place.
And also we have conducted numerical calculations to see
whether the denominator of a convergent of each δTsi/Tc
would pass between M and n×M. The followings are the re-
sults of calculations for 4,999 samples of δTsi/Tc’s whose
values take from 0 to 1 and for M=128:
“Area A” indicates the occurrence rate (with respect to M)
that the convergent denominator of δTsi/Tc passes between

128 and 256 in the quasi-coherent (or coherent) sampling
state.  For our simulation with n=2 and M=128, the number
of such δTsi/Tc’s is 2,272 (i.e. its occurrence rate is 2,272/
4,999).
“Area B” shows the occurrence rate that the convergent de-
nominator of δTsi/Tc does not pass between 128 and 256 in
the quasi-coherent (or coherent) sampling state. For our
simulation with n=2 and M=128, the number of such δTsi/
Tc’s is 396 (i.e. its occurrence rate is 396/4,999).
“Area C” shows the occurrence rate that the convergent de-
nominator of δTsi/Tc passes between 128 and 256 in the in-
coherent sampling state. For our simulation with n=2 and
M=128, the number of such δTsi/Tc’s is 0 (i.e. its occurrence
rate is 0).
“Area D” shows the occurrence rate that the convergent de-
nominator of δTsi/Tc does not passes between 128 and 256
in the incoherent sampling state. For our simulation with
n=2 and M=128, the number of such δTsi/Tc’s is 2,331 (i.e.
its occurrence rate is 2,331/4,999).

Fig. 8 ∆Ts_max/Tc versus δTsi/Tc when a denominator of δTsi/Tc is
43.

Fig. 9 Convergents plots of fractions for a denominator 43 of δTsi/Tc shown in Fig. 8.

Fig. 10 Simulation results for occurrence rates of sampling states for
δTsi/Tc; Area A and Area D are judged as the quasi-coherent and inco-
herent sampling states respectively, both by convergent and ∆Ts_max/
Tc methods. However Area B is judged as the quasi-coherent sampling
state by the ∆Ts_max/Tc method but judged as the incoherent sampling
state by the convergent method. Note that the occurrence rate for Area
C is zero and hence it does not appear in the graph.
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Figure 10 shows results of the occurrence rates (Y-axis)
of each area with respect to M (note that X-axis is the loga-
rithmic scale of M). The results show that the occurrence rate
is zero in area C and it is a little bit less than 10% in area B.
Thus we see that δTsi/Tc which reaches a final value with the
convergent denominator passing between M and n×M satis-
fies a sufficient condition to be “in the quasi-coherent sam-
pling state.”

7. Simulation of Waveform Recording Times

We have conducted numerical calculation of the waveform
recording time for the random sampling, the coherent sam-
pling and the quasi-coherent sampling systems in order to
evaluate the effectiveness of our proposed method. The cal-
culation conditions are as follows:
(1) The total number of data pieces to be recorded is set to
1,024. The number of interpolation points M per one clock
period is set to 512 (supposing the clock rate to be 100 MHz,
this condition corresponds to 2 ns/div. of sweep-time and 20
ps of time-resolution). Waveform data is recorded after the
trigger input time point, and we calculate the waveform re-
cording time by repeating the sampling operation until the
total data is recorded twice and averaging the required time.
If the total data are not recorded during operation of 200×M
time-interpolations, sampling operation is suspended and the
value obtained by dividing the total recording time by the
number of the recorded data pieces is used.
(2) The period required for time-interpolation is set to 8×Tc,
and data transfer time is set to 8×Tc/data. We also assume
that the required time to randomize the clock phase in the
random sampling system and to change the clock period in
the coherent and the proposed sampling system are
100,000×Tc (1 ms if the clock rate is 100 MHz).
(3) We suppose that the clock period (or reference period) is
1, and the clock is ideal (without fluctuations in time peri-
ods). Also we assume that the input signal has fluctuations
with a Gaussian distribution in time periods. The average time
period of the target input signal has 21 levels (in 0.45 steps)
in a range of 1 to 10 and the standard deviation of its fluctua-
tions has 5 levels in a range of 10–2 to 10–6.
(4) The number of accumulation times to find the hold-off
period Trr in the coherent and the proposed sampling sys-
tems is 128, and both systems adopt a constant hold-off
method [7], [8] to avoid waveform missing phenomena.

Figure 11 shows numerical calculation results, which
lead to the following observations:
(1) In the coherent and the proposed quasi-coherent sampling
systems, the waveform recording time (z-axis value) is short
when signal fluctuation (y-axis value) is small, while it is
long when signal fluctuation is large. Its reason is as follows:
when the input signal fluctuation is small, the system per-
forms a coherent or a quasi-coherent sampling operation and
records waveform data with high efficiency. On the other
hand, when the fluctuation is large, the system ends up re-
cording waveform data randomly no matter how the clock
period is controlled.

(2) In the random sampling, the waveform recording time is
almost independent of both the average period and the stan-
dard deviation of the input signal period fluctuation. How-
ever, the waveform recording time is quite long due to the
clock period randomizing scheme.

Figure 12 shows the simulation results comparison
among the three sampling methods. X-axis indicates the stan-
dard deviation of the input signal period fluctuation while y-
axis shows the mean value of the waveform recording time
of 21 levels for the input signal period. We see that the pro-
posed sampling system can record data with time less than 1/
2 of that of the coherent sampling system. Its main reason is
that δTsi ’s which satisfy the quasi-coherent sampling state
of n=2 amount to 50% of all δTsi ’s, as is observed in Fig. 10.
Therefore the number of times of the clock period changes
reduces almost by half.

Also note that the proposed and the coherent sampling
systems can record data with time less than 1/100 of that of

Fig. 11 Numerical simulation results of the waveform recording time;
the quasi-coherent sampling method (top), the coherent sampling
method (middle) and the random sampling method (bottom).
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the random sampling system. This feature stems from the
fact that both sampling systems discriminate proper and im-
proper changes of their clock period after 128 times accumu-
lation of holdoff period Trr, while the random sampling sys-
tem shifts its clock phase at every holdoff period.

8. Conclusion

We have proposed a new quasi-coherent sampling method
for wideband waveform measurement which improves high
waveform recording efficiency significantly. First a new con-
cept of “quasi-coherent sampling” is introduced, and next it
is formulated to determine quantitatively whether the sam-
pling is in the quasi-coherent state. Then we propose an ef-
fective algorithm using the Brocot space theory to determine
it. The numerical simulation results showed that the proposed
sampling system can record data with more than twice faster
compared to a coherent sampling system with a time interpo-
lator which we previously proposed. Hence the proposed
method would be effective for implementing high perfor-
mance DSOs.
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Fig. 12 Numerical simulation results comparison of waveform re-
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