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SUMMARY This paper presents a technique for improving the SNR
and resolution of complex bandpass ∆ΣADCs which are used for wireless
communication systems such as cellular phone, wireless LAN and Blue-
tooth. Oversampling and noise-shaping are used to achieve high accuracy
of a ∆ΣAD modulator. However when a multi-bit internal DAC is used
inside a modulator, nonlinearities of the DAC are not noise-shaped and the
SNR of the ∆ΣADC degrades. For the conversion of complex intermedi-
ate frequency (IF) input signals, a complex bandpass ∆ΣAD modulator can
provide superior performance to a pair of real bandpass ∆ΣAD modulators
of the same order. This paper proposes a new noise-shaping algorithm—
implemented by adding simple digital circuitry—to reduce the effects of
nonlinearities in multi-bit DACs of complex bandpass ∆ΣAD modulators.
We have performed simulation with MATLAB to verify the effectiveness of
the algorithm, and the results show that the proposed algorithm can improve
the SNR of a complex bandpass ∆ΣADC with nonlinear internal multi-bit
DACs.
key words: complex bandpass ∆ΣAD modulator, bandpass filter, noise-
shaping, ADC, DAC, element rotation, data-weighted averaging, low-IF
receiver

1. Introduction

Recently, research into bandpass ∆ΣADCs has become pop-
ular for their applications to RF receivers in wireless com-
munication systems such as cellular phone, wireless LAN
and Bluetooth [1]–[5]. Shifting the ADC towards the an-
tenna side in the receiver architecture relaxes the require-
ments placed on analog circuits at the expense of more com-
plicated digital circuit, allowing more digital integration of
analog function on a single chip, and resulting in a cheaper
system with a higher level of integration. However, ADCs
with high linearity, large dynamic range, bandwidth and
strong image rejection capabilities are required, and a com-
plex bandpass ∆ΣADC is one of their candidates.

In communication systems applications using complex
intermediate frequency (IF) input signals, image signals
caused by mismatches between I and Q paths may adversely
affect system performance, and a complex bandpass ∆ΣAD
modulator [1]–[6] can provide better suppression of image
signals and thus superior performance to a pair of real band-
pass ∆ΣAD modulators of the same order. Also especially
in low-IF receivers, it is known [3] that the complex band-
pass ∆ΣAD modulator relaxes the performance requirement
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(such as sampling speed) over a pair of real bandpass ∆ΣAD
modulators.

In ∆ΣAD modulators, oversampling and noise shap-
ing techniques are used to achieve high accuracy. When
a single-bit modulator (i.e., internal ADC and DAC are 1-
bit) is used to achieve high SNR, higher oversampling ra-
tio (OSR) is needed which demands higher sampling rate,
and/or a high-order filter inside a modulator (as well as
a high-order digital filter following the ∆ΣAD modulator)
is required which may cause modulator stability problems.
On the other hand, when a multi-bit ∆Σ modulator is used,
higher resolution can be achieved with lower OSR, and the
stability problems are alleviated [7], [8].

A multi-bit DAC cannot be made perfect linear, while
a 1-bit DAC is inherently linear. Multi-bit DAC nonlinearity
is equivalent to errors added directly to the input signal - it is
not reduced by noise-shaping, and hence they may degrade
the SNR of the ∆ΣADC. The input and output of a bandpass
∆ΣAD modulator shown in Fig. 1 are given by

M(z) =
H(z)

1 + H(z)

[
X(z) +

1
H(z)

E(z) +
1

H(z)
δ(z)

]
(1)

Y(z) =
H(z)

1 + H(z)

[
X(z) +

1
H(z)

E(z) − δ(z)

]
. (2)

Here the signal part S (z) and the noise part N(z) are defined
as:

S (z) :=
H(z)

1 + H(z)
X(z)

N(z) :=
H(z)

1 + H(z)

[
1

H(z)
E(z) − δ(z)

]
. (3)

From Eq. (3), we see that nonlinearity errors δ(z) of DAC
directly appears at output of the modulator without noise-
shaping, while internal quantization noise E(z) of ADC is
noise-shaped by 1/H(z); this makes it difficult to realize a
high resolution ADC.

One way to overcome this multi-bit DAC nonlinearity
problem is (self-)calibration of the multibit DAC, and an-
other way is to use signal processing algorithms to noise-
shape the multi-bit DAC nonlinearities. There are already
some algorithms for noise-shaping of multi-bit DAC non-
linearities in bandpass ∆ΣAD modulators, such as dynamic
element matching (DEM) [8] and element rotation (data-
weighted averaging) [9]. However either of them is for real
bandpass ∆ΣAD modulators (single-input & output only)
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Fig. 1 A bandpass ∆ΣAD modulator and its equivalent block diagram.
X(z) (Ain) is an analog input, Y(z) (Dout) is a digital output, E(z) is quan-
tization noise of an ADC, and δ(z) is nonlinearity of a DAC.

shown in Fig. 1. This paper presents a new algorithm which
noise-shapes nonlinearities of multi-bit DACs in a complex
bandpass ∆ΣAD modulator which has I, Q inputs and out-
puts. Adding simple digital circuitry can provide first-order
complex bandpass noise-shaping of nonlinearities of multi-
bit DACs, and improve the SNR of a multi-bit complex
bandpass ∆ΣADC. Our simulation results with MATLAB
show the proposed method can improve the SNR and reso-
lution of complex bandpass ∆ΣADCs.

Section 2 reviews DAC nonlinearity noise-shaping al-
gorithms (element rotation methods) for lowpass and high-
pass modulators with single-input & output, based on [9],
[12]. Section 3 describes our proposed DAC nonlinearity
noise-shaping algorithm for complex bandpass modulators,
and Sect. 4 shows its MATLAB simulation results. Finally
Sect. 5 provides conclusion.

Throughout this paper, we assume, without loss of gen-
erality, that internal DACs in ∆ΣAD modulators have 9-level
resolution; their digital input takes the value of 0, 1, 2, . . . ,
7, or 8. We also suppose that they are implemented with the
segmented current-steering DAC architecture [14].

2. DAC Nonlinearity Noise-Shaping Algorithms in
Lowpass and Highpass Modulators

In this section, we will describe element rotation (data-
weighted averaging: DWA) first-order noise-shaping algo-
rithms of DAC nonlinearities in (single-input & output) low-
pass and highpass modulators [9], [12], which will be used
for the algorithm derivation for complex bandpass modula-
tors in Sect. 3.

2.1 Normal Segmented DAC and Unit Cell Mismatches

A normal segmented current-steering DAC with 9-level res-
olution in Fig. 2 consists of 8 unit-current-cells and a resis-
tor. We denote Ik for the current of k-th unit-current-cell
(k = 0, 1, 2, . . . , 7). Ideally all currents Ik (k = 0, 1, 2, . . . , 7)
should be equal, however in practice they can be slightly
different due to such as process variation inside an IC chip.
Let

Ik := I + ek (k = 0, 1, 2, . . . , 7).

Fig. 2 A current-steering segmented DAC with 9-level resolution. Here
e0, e1, . . . e6 and e7 denote current source mismatches.

(a)

(b)

Fig. 3 (a) Lowpass element rotation architecture. (b) Equivalent block
diagram.

Here

I :=
(
I0 + I1 + I2 + . . . + I7

)
/8,

e0 + e1 + e2 + . . . + e7 = 0,

and ek is the current mismatch part of Ik. When the digital
input data is m, unit-current-cells of 0, 1, 2, . . .m− 1 are ON
in any sample time, and the output voltage Vout is given by

Vout = mRI + δ.

Here δ is DAC nonlinearity given by

δ := R(e0 + e1 + e2 + . . . + em−1).

In this case the mismatch effects of e0, e1, . . . , e7 (or equiva-
lently DAC nonlinearity δ) to the ADC output cause almost
flat power spectrum in the entire band.

2.2 Lowpass Element Rotation

This subsection explains a lowpass element rotation algo-
rithm [12]. Let us consider a circuit in Fig. 3, which consists
of a digital lowpass filter (1/(1 − z−1)), a DAC with nonlin-
earity of δ(z) and an analog high pass filter (1 − z−1). Then
we have the followings:

C2(z) =
1

1 − z−1
C1(z) (4)

C4(z) = (1 − z−1) C3(z) (5)

C3(z) = C2(z) + δ(z). (6)

Thus the analog output of C4(z) is given by
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Fig. 4 A current-steering segmented DAC with 9-level resolution in a
ring form.

C4(z) = C1(z) + (1 − z−1) δ(z). (7)

We see that the DAC nonlinearity δ(z) is first-order noise-
shaped by 1 − z−1. Note that Eqs. (4), (5), (6) are equivalent
to the following:

C2(n + 1) = C2(n) +C1(n + 1) (8)

C4(n + 1) = C3(n + 1) − C3(n) (9)

C3(n) = C2(n) + δ(n). (10)

If we replace a multi-bit DAC in a lowpass ∆ΣAD modula-
tor with the circuit in Fig. 3, its DAC nonlinearity is noise-
shaped. However, in practice this structure cannot work
properly; suppose that C1(n) is always a positive number,
say 2, then the DAC input C2(n) becomes infinite (out-of-
DAC-input-range) as n increases. Then the equivalent im-
plementation (called an element rotation algorithm) has to
be considered.

First we modify the segmented current-steering DAC
as follows:

• Arrange unit-current-cells of the DAC in a ring form as
shown in Fig. 4.
• Let the DAC have a pointer to show which unit-current-

cell should be selected next sample time, and let the
pointer be P(n) at time n.

Suppose that we have infinite number of unit-current-cells,
and C2(n) = a, C1(n + 1) = b (where 0 ≤ b ≤ 8). Then the
unit-current-cells of 0, 1, . . . , a + b − 1 in the DAC are ON,
and it follows from Eqs. (8) and (10) that

C3(n + 1) = (a + b)RI

+ R(e0 + e1 + e2 + . . . + ea+b−1).

Since

C3(n) = aRI + R(e0 + e1 + e2 + . . . + ea−1),

the analog output C4(n + 1) is given by

C4(n + 1) = C3(n + 1) −C3(n)

= bRI + R(ea−1 + ea + ea+1 + . . . + ea+b−1),

which corresponds that the unit-current-cells of a − 1, a, a+

Fig. 5 DAC nonlinearity lowpass noise-shaping by an element rotation
algorithm when a segmented current-steering internal DAC with 9-level
resolution is used. (a) Current-cells in ON state which are filled in black,
when input data are sequentially given by 4, 3, 2, 2, 5,. . . . (b) Simulation
result for output spectrum. We see that the DAC nonlinearity power is
noise-shaped (“LP Noise Shaping”) with the element rotation algorithm
while it is not noise-shaped (“No Shaping”) without the algorithm.

1, . . . , a+ b− 1 in the DAC are ON. However, there are only
8 unit-current-cells in the actual DAC, and a + b − 1 can
be larger than 7. Then for the actual implementation of the
above structure in the lowpass element rotation algorithm,
the unit-current-cells are arranged in a ring form, and in this
case the unit-current-cells of mod8(a−1),mod8(a),mod8(a+
1), . . . ,mod8(a + b − 1) are ON. The rigorous description of
the lowpass element rotation algorithm is as follows:

• Suppose that the input data C1(n) = cn (where n =
0, 1, 2, 3 . . .).
• Turn on cn unit-current-cells of mod8(P(n) + 1),

mod8(P(n) + 2), mod8(P(n) + 3), . . ., mod8(P(n) + cn).
• Set the pointer at time n+ 1 to P(n+ 1) = mod8(P(n)+

cn).

Figure 5(a) shows the unit-current-cells in ON state which
are filled in black when input data are sequentially given by
4, 3, 2, 2, 5. . . When the input is 4 at time n, unit-current-
cells of 0, 1, 2, 3 are ON. When it is 3 at time n + 1, those
of 4, 5, 6 are ON, and when it is 2 at time n + 2, those of
7, (mod8(8)=)0 are ON. Also when it is 2 at time n + 3,
those of (mod8(9)=)1, (mod8(10)=)2 are ON. By select-
ing unit-current-cells in this way (i.e., always clockwise),
mismatches among unit-current-cells are first-order lowpass
noise-shaped [11]–[13]. Figure 5(b) shows the noise-shape
effect by MATLAB simulation. The ADC output power
spectrum contributed by DAC nonlinearities in the signal
band is flat with a normal segmented current-steering DAC,
however it is noise-shaped when this algorithm is incorpo-
rated.

2.3 Highpass Element Rotation

This subsection explains a highpass element rotation algo-
rithm [9]. Let us consider a circuit in Fig. 6, which consists
of a digital highpass filter (1/(1 + z−1)), a DAC with nonlin-
earity of δ(z) and an analog lowpass filter (1+ z−1). Then we
have the followings:

D2(z) =
1

1 + z−1
D1(z) (11)
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(a)

(b)

Fig. 6 (a) Highpass element rotation architecture. (b) Equivalent block
diagram.

D4(z) = (1 + z−1) D3(z) (12)

D3(z) = D2(z) + δ(z). (13)

Thus the analog output of D4(z) is given by

D4(z) = D1(z) + (1 + z−1)δ(z). (14)

We see that the DAC nonlinearity δ(z) is first-order noise-
shaped by 1 + z−1. Note that Eqs. (11), (12), (13) are equiv-
alent to the following:

D2(n + 1) = D2(n) − D1(n + 1) (15)

D4(n + 1) = D3(n + 1) + D3(n) (16)

D3(n) = D2(n) + δ(n). (17)

If we replace a multi-bit DAC in a highpass ∆ΣAD mod-
ulator with the circuit in Fig. 6, its DAC nonlinearity is
noise-shaped. However, similarly to the lowpass case, this
structure cannot work properly and we have to consider its
equivalent implementation (a highpass element rotation al-
gorithm).

We modify the segmented current-steering DAC so that
the unit-current-cells are in a ring form and the DAC have a
pointer P(n). The rigorous description of the highpass ele-
ment rotation algorithm is as follows:

• At time 2n:

– Suppose that the input data D1(2n) = d2n.
– Turn on d2n unit-current-cells of P(2n), mod8

(P(2n) + 1), mod8(P(2n) + 2), . . ., mod8(P(2n) +
d2n − 1). In other words, d2n unit-current-cells are
selected from P(2n) clockwise.

– Set the pointer at time 2n + 1 to P(2n + 1) =
mod8(P(2n) + d2n − 1).

• At time 2n + 1:

– Suppose that the input data D1(2n + 1) = d2n+1.
– Turn on d2n+1 unit-current-cells of P(2n + 1),

mod8(P(2n + 1) − 1), mod8(P(2n + 1) − 2), . . .,
mod8(P(2n + 1) − d2n + 1). In other words,
d2n+1 unit-current-cells are selected from P(2n+1)
counter clockwise.

– Set the pointer at time 2n + 2 to P(2n + 2) =
mod8(P(2n + 1) − d2n+1 + 1).

Fig. 7 Highpass noise-shaping of DAC nonlinearities by an element ro-
tation algorithm when a segmented current-steering internal DAC with 9-
level resolution is used. Current-cells in ON state which are filled in black,
when input data are sequentially given by 4, 3, 2, 6, 5, . . . .

Figure 7(a) shows the unit-current-cells in ON state while
input data are shifted by 4, 3, 2, 6, . . . for highpass noise-
shaping in element rotation algorithm by 1 + z−1. When the
input is 4 at time n, unit-current-cells of 0, 1, 2, 3 are ON.
When it is 3 at time n+ 1, those of 3, 2, 1 are ON, and when
it is 2 at time n + 2, those of 1, 2 are ON. Also when it is
6 at time n + 3, those of 2, 1, 0, 7, 6, 5 are ON. In other
words, unit-current-cells are selected clockwise or counter
clockwise alternately at every sample time.

3. Complex Bandpass Noise-Shaping Algorithm of
DAC Nonlinearities

In this section, we will derive an element rotation algorithm
in complex bandpass modulators, based on the element ro-
tation algorithms in lowpass and highpass modulators de-
scribed in Sect. 2.

3.1 Complex Bandpass ∆ΣAD Modulator

Figure 8 shows a complex bandpass ∆ΣAD modulator, a
first-order complex bandpass filter and its gain character-
istics. We see that the complex filter has two inputs and
outputs, and it consists of a complex bandpass filter, two
internal ADCs and DACs. For example, the transfer func-
tion of the complex bandpass filter shown in Fig. 8(b) can be
written as follows [6]:

H(z) =
1

z − (d + jc)

where c and d are design parameters (appropriate constants
of real values) which characterize the complex bandpass fil-
ter. We see in Fig. 8(c) that the gain of the complex bandpass
filter is asymmetrical to the axis of ω = 0.

3.2 Proposed Architecture for Complex Bandpass Noise-
Shaping of DAC Nonlinearities

We consider here complex bandpass ∆ΣAD modulators
whose center of passband is at the normalized frequency
of ω = π/2 (1/4 of the sampling frequency) [1]–[6]. Fig-
ure 9 shows our proposed architecture for complex bandpass
noise-shaping of DAC nonlinearities. It consists of a digital
complex filter at front-end, two DACs, and an analog com-
plex filter at back-end. I1 is the digital output of the ADC in
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Fig. 8 (a) Complex bandpass ∆ΣAD modulator block diagram. (b) An
example of a complex bandpass filter. (c) Gain characteristics of Fig. 8(b).

Fig. 9 Proposed architecture of DAC nonlinearity noise-shaping for a
complex bandpass modulator, where two pointers and multiplexers are
added to the feedback DACs. I1 is the I-channel ADC output and Q1 is
the Q-channel ADC output, while I4 is the I-channel DAC output and Q4

is the Q-channel DAC output. δ1 and δ2 denote the nonlinearities of DAC1
and DAC2 respectively. However, note that this architecture cannot be im-
plemented directly.

I-channel and Q1 is that in Q-channel. Also I4 is the analog
output of the DAC in I-channel and Q4 is that in Q-channel.
The transfer function of the digiltal complex filter at front-
end is written by

F(z) =
1

z − j
.

Then the transfer function of the analog complex filter at
back-end is given by 1/F(z). Noting that the complex multi-
bit output signal of 2-channel ADCs is given by

Y(z) := I1(z) + jQ1(z),

and the complex output signal of 2-channel DACs which is
fedback to the complex filter is given by

M(z) := I4(z) + jQ4(z),

we obtain the followings in Fig. 9:

I2(z) + jQ2(z) = F(z) · Y(z) (18)

I3(z) + jQ3(z) = (I2(z) + jQ2(z)) + (δ1 + jδ2) (19)

M(z) =
1

F(z)
(I3 + jQ3). (20)

By substituting Eqs. (18) and (19) to Eq. (20), we have

M(z) = Y(z) +
1

F(z)
(δ1 + jδ2). (21)

Note that Eqs. (1) and (2) hold also for the complex band-
pass∆ΣAD modulator if we consider H(z) is a complex filter
and X(z), Y(z), E(z) and δ(z) are complex signals. Then by
substituting Eq. (21) to Eq. (1) and sorting it, we obtain

N(z) =
H(z)

1 + H(z)

·
[

1
H(z)

E(z) − 1
F(z)

(δ1(z) + jδ2(z))

]
. (22)

We see that by comparing Eq. (22) with Eq. (3), not only
the (complex) quantization noise E(z) of 2-channel ADCs
is noise-shaped by 1/H(z), but also the 2-channel DACs
(complex) nonlinearities error (δ1 + jδ2) is noise-shaped by
1/F(z).

3.3 Realization Algorithm for Proposed Architecture

We obtain the following equations in Fig. 9:

I2(n + 1) = I1(n) − Q2(n) (23)

I4(n + 1) = I3(n + 1) + Q3(n) (24)

I3(n) = I2(n) + δ1(n) (25)

Q2(n + 1) = I2(n) + Q1(n) (26)

Q4(n + 1) = Q3(n + 1) − I3(n) (27)

Q3(n) = Q2(n) + δ2(n). (28)

The direct realization of the proposed architecture in Fig. 9
is not possible because I2, Q2 can be out-of-input-range of
the following I, Q-channel DACs. For example, suppose
that

I1(n) + jQ1(n) = exp( j
π

2
n) + 4.

This can happen because the center of the signal band in the
modulator is at the normalized frequency of ω = π/2, and
I1, Q1 are integer values between 0 to 8. Then it follows
from Eqs. (23) and (26) that

I2(1) = 5 − Q2(0), I2(2) = −I2(0),

I2(3) = −7 + Q2(0), I2(4) = I2(0) . . .

Q2(1) = 4 + I2(0), Q2(2) = 10 − Q2(0),

Q2(3) = 4 − I2(0), Q2(4) = −4 + Q2(0) . . .

We see that I2 and Q2 can be out of the DAC input rage (0,
1, 2, . . . ,8).

Now we describe an equivalent realization of the pro-
posed architecture; our implementation use only a digital
filter at front-end of 2-channel DACs and does not require
an analog filter at back-end.

[ Proposed Algorithm ]
We modify the two segmented current-steering DACs as fol-
lows (Fig. 10(a)):
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Fig. 10 (a) Proposed complex bandpass ∆ΣAD modulator. (b) Explana-
tion of the proposed algorithm. The unit-current-cells in ON state are filled
in black for a real part (I-path) and in gray for an imaginary part (Q-path),
when the complex input data are sequentially given by 4+3j, 2+5j, 3+j,
6+2j, . . . .

• Arrange unit-current-cells of each DAC in a ring form
as shown in Fig. 4.
• Let each DAC have a pointer to show which unit-

current-cell should be selected next sample time, and
let the pointers for DAC1 and DAC2 be P1(n) and P2(n)
at time n.

Then let their operation be as follows:

• At time 2n:
Suppose that the I-channel DAC input I1(2n) = i2n.

– Turn on the following unit-current-cells of DAC1:
P1(2n), mod8(P1(2n)+1), . . . , mod8(P1(2n)+i2n−
1). In other words, i2n unit-current-cells are se-
lected clockwise from P1(2n).

– Make the output of DAC1 to be the I-channel DAC
output, I4(2n).

– Set the pointer of DAC1 at time 2n + 1 to
P1(2n + 1) = mod8(P1(2n) + i2n − 1).

Assume that the Q-channel DAC input Q1(2n) = q2n.

– Turn on the following unit-current-cells of DAC2:
mod8(P2(2n) + 1), mod8(P2(2n) + 2), . . . ,
mod8(P2(2n) + q2n). In other words, q2n unit-
current-cells are selected clockwise from P2(2n)+
1.

– Make the output of DAC2 to be the Q-channel
DAC output, Q4(2n).

– Set the pointer of DAC2 at time 2n + 1 to
P2(2n + 1) = mod8(P2(2n) + q2n).

• At time 2n + 1:
Suppose that the I-channel DAC input I1(2n + 1) =
i2n+1.

– Turn on the following unit-current-cells of DAC2:
P2(2n+1), mod8(P2(2n+1)−1), . . . , mod8(P2(2n+
1) − i2n+1 + 1). In other words, i2n+1 unit-current-
cells are selected counter clockwise from P2(2n +
1).

– Make the output of DAC2 to be the I-channel DAC
output, I4(2n + 1).

– Set the pointer of DAC2 at time 2n + 2 to
P2(2n + 2) = mod8(P2(2n + 1) − i2n+1 + 1).

Assume that the Q-channel DAC input Q1(2n + 1) =
q2n+1.

– Turn on the following unit-current-cells of DAC1:
mod8(P1(2n + 1) + 1), mod8(P1(2n + 1) + 2),
. . . , mod8(P1(2n + 1) + q2n+1) In other words,
q2n+1 unit-current-cells are selected clockwise
from mod8(P1(2n + 1) + 1).

– Make the output of DAC1 to be the Q-channel
DAC output, Q4(2n + 1).

– Set the pointer of DAC1 at time n + 2 to
P1(2n + 2) = mod8(P1(2n + 1) + q2n+1).

Figure 10(b) explains their operation when the complex in-
put data are sequentially given by 4+3j, 2+5j, 3+j, 6+2j,
. . . .

Now we will explain how this algorithm was derived
and why it is equivalent to the architecture in Fig. 9.

First, we consider the I-channel. The I-channel DAC
(whose output is I4 as shown in the upper part of Fig. 9) is
equivalent to �Highpass digital filter +DAC + Lowpass ana-
log filter�; look at the left part of Fig. 6(b) and the upper-left
part of Fig. 9, and also compare Eqs. (23) and (15). If Q2(n)
in Eq. (23) is replaced with I2(n), Eq. (23) has the same form
as Eq. (15). Similarly look at the right part of Fig. 6(b) and
the upper-right part of Fig. 9, and also compare Eqs. (24) and
(16). Q3(n) in Eq. (24) is replaced with I3(n), Eq. (24) has
the same form as Eq. (16). Also Eq. (25) has the same form
as Eq. (17). Thus we see the following:

• For the I-channel DAC output I4, we apply a highpass
element rotation algorithm with internal interaction be-
tween I, Q paths.

Next, we consider the Q-channel. The Q-channel DAC
(whose output is Q4 as shown in the lower part of Fig. 9) is
equivalent to �Lowpass digital filter +DAC +Highpass ana-
log filter�; look at the left part of Fig. 3(b) and the lower-left
part of Fig. 9, and also compare Eqs. (26) and (8). If I2(n) in
Eq. (26) is replaced with Q2(n), Eq. (26) has the same form
as Eq. (8). Similarly look at the right part of Fig. 3(b) and
the lower-right part of Fig. 9, and also compare Eqs. (27)
and (9). I3(n) in Eq. (27) is replaced with Q3(n), Eq. (27)
has the same form as Eq. (9). Also Eq. (28) has the same
form as Eq. (10). Thus we see the following:

• For the Q-channel DAC output Q4, we apply a lowpass
element rotation algorithm with internal interaction be-
tween I, Q paths.

Now we consider the interactions between I-path and Q-path
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in Fig. 9 (or equivalently in Eqs. (23), (24), (26) and (27)).
It follows from Eqs. (23) and (24) that the I-channel out-
put I4 at time n + 1 is a function of the Q-channel internal
states (Q2(n), Q3(n)) at time n as well as the I-channel input
I1. Also we see from Eqs. (26) and (27) that the Q-channel
output Q4 at time n + 1 is a function of the I-channel inter-
nal states (I2(n), I3(n)) at time n as well as the Q-channel
input Q1. Noting that the pointers P1(n), P2(n) keep some
information of the I, Q channels internal states, we have the
following observation:

• If DAC1 with a pointer P1 is used for I-channel and
DAC2 with a pointer P2 is used for Q-channel at time
2n, then DAC1 is used for Q-channel and DAC2 is used
for I-channel at time 2n + 1.

Then the proposed algorithm is derived and the nonlinear-
ities of 2-channel DACs, δ1, δ2, will be first-order complex
bandpass noise-shaped.

4. Simulation of Proposed Algorithm

We have conducted MATLAB simulations to confirm the
noise-shaping function on multi-bit DAC nonlinearities of
the proposed algorithm. We used a fourth-order complex
modulator [15] with internal ADCs/DACs of 9-level resolu-
tion in three cases. Figure 11 shows the complex bandpass
filter used inside the modulator, where three poles are lo-
cated at the normalized angular frequency of ω = π/2 while
one is at ω = 3π/2; the reason that one pole is located at
ω = 3π/2 is that when this complex filter is incorporated in
a modulator in Fig. 8, the quantization noise of the modu-
lator is reduced by noise-shaping at ω = 3π/2, which will
appear at ω = π/2 of the modulator output as image quanti-
zation noise caused by I, Q mismatches inside the modula-
tor. For all three cases, the same analog complex bandpass
filter and two ideal internal ADCs in a ∆Σ modulator were
used. However two DACs in a modulator in three cases are
different as follows:

• Case 1: Two identical and ideal (linear) DACs were
used.
• Case 2: Two normal segmented current-steering DACs

with mismatches among unit-current-cells were used.

Fig. 11 A fourth-order complex bandpass filter used in a modulator in
Fig. 8.

• Case 3: Two DACs whose mismatches are the same as
case 2 and which employ the proposed element rotation
algorithm were used.

Figures 12, 13 show the simulation result comparison for
output spectrum and SNR of modulators in three cases,
where the simulation conditions are as follows:

• In cases 2 and 3, e0, e1, e2, . . . , e7 in DAC1 are 0.0023,
−0.0015, −0.003, 0.0028, 0.0025, 0.0029, −0.001 and
0.0 (LSB) while those in DAC2 are −0.0017, 0.0015,
−0.0025, 0.002, 0.0026, 0.0, −0.0019, and 0.0 (LSB).
• 16 K-point FFT is used to obtain the SNR.
• Input frequency ( fin)/sampling frequency ( fs) =

4,095/16,384.

We see that in case 1, SNR of the ADC increases as OSR
increases. However in case 2, SNR saturates as OSR in-
creases; for small OSRs, quantization noise is dominant
but it is noise-shaped and hence SNR improves as OSR in-

Fig. 12 The simulated results of the output power spectrum for complex
bandpass ∆Σ modulators. (a) The simulated result with ideal DACs. (b)
The simulated result with normal segmented current-steering DACs with
mismatch among unit-current-cells. (c) The simulated result with proposed
algorithm of DACs with the same mismatch among unit-current-cells. The
reason that the output power is noise-shaped at ω = 3π/2 (as well as at
ω = π/2 which is the center of the signal band) is that the complex filter in
Fig. 11 has a pole at ω = 3π/2 (as well as three poles at ω = π/2).

Fig. 13 The simulated results of SNR versus OSR in cases 1, 2 and 3.
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Fig. 14 Simulation results of the modulator SNR versus rms values of
mismatches e0, e1, e2, . . . , e7 for OSR = 32, 64, 128 and 256. The left
graph shows in case that normal segmented DACs are used while the right
graph shows in that case that our proposed algorithm is incorporated.

Fig. 15 The simulated results of the output power spectrum focused
around the signal band in Fig. 12, where (4,095/16,384) fs is the signal
frequency component. (a) Case 1. (b) Case 2. (3) Case 3. We see that in
case 2, there are spurious tones at (4,091/16,384) fs and (4,099/16,384) fs

while they are removed in case 3.

creases. However for high OSRs the noise due to DAC non-
linearity becomes dominant, which is not noise-shaped and
hence increasing OSR does not help much improve SNR.
On the other hand, in case 3, the noise caused by nonlinear-
ities of DAC is pushed out from the signal band, and their
influence to the ADC accuracy is reduced which leads to the
ADC SNR improvement.

Figure 14 shows simulation results of the modulator
SNR versus root-mean-square (rms) values of mismatches
e0, e1, e2, . . . , e7 for OSR = 32, 64, 128 and 256. Here the
value of the mismatches is defined by

rms :=
√

(e2
0 + e2

1 + e2
2 + . . . + e2

7)/8

and the ratios of e0, e1, e2, . . . , e7 in DAC1 are 0.0023,

−0.0015, −0.003, 0.0028, 0.0025, 0.0029, −0.001 and 0.0
(LSB) while those in DAC2 are −0.0017, 0.0015, −0.0025,
0.002, 0.0026, 0.0, −0.0019, and 0.0 (LSB). The left graph
shows in case 2 while the right graph shows in case 3. We
see that in case 2 SNR degrades rapidly as rms value in-
creases while in case 3 SNR is improved.

We observe in Figs. 13, 14 that in case2 SNR does
not improve even if OSR increases for relatively large DAC
nonlinearities (if the spectrum of the DAC nonlinearities er-
ror is white, twice of OSR leads to at least 3 dB SNR im-
provement, even if it is not noise-shaped); this is because
there are spurious tones at the frequencies of (4,091/16,384)
fs and (4,099/16,384) fs due to large DAC nonlinearityies
(Fig. 15), which are the main noise (distortion) components
and are not removed with this range of OSRs.

5. Concluding Remarks

We have proposed a new noise-shaping algorithm of multi-
bit DAC nonlinearities for a high resolution complex band-
pass ∆ΣAD modulator. The performance of the complex
bandpass ∆ΣADC can be improved by adding some simple
digital circuits. The effectiveness of proposed algorithm is
confirmed by MATLAB simulation. Finally we remark the
followings:

• In the proposed algorithm, at time 2n, DAC1 is used
for I-channel and DAC2 is for Q-channel, while, at
time 2n + 1, DAC1 is for Q-channel and DAC2 is
for I-channel; DAC1, DAC2 are used alternately for I,
Q-channels, and hence the harmful influence by mis-
matches between 2-channel DACs is expected to be
suppressed with this algorithm.
• The proposed algorithm is applicable to multi-bit com-

plex bandpass ∆Σ DA modulators as well as AD mod-
ulators. The importance of the bandpass ∆Σ DA mod-
ulator is described in [16].
• Our approach here is to improve the accuracy of analog

circuits using digital signal processing techniques. We
believe that such an approach becomes more important,
because as the VLSI technology progresses and the de-
vice size scales down, the supply voltage goes down,
which makes it difficult to achieve the high accuracy
of analog circuits with only circuit technique. On the
other hand, the digital circuit becomes faster, cheaper
and lower power, which makes rather complicated dig-
ital signal processing algorithm feasible to utilize for
the analog circuit performance improvement.
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