
Multitone Curve-Fitting Algorithms for Communication
Application ADC Testing

Yoshito Motoki,1 Hidetake Sugawara,1 Haruo Kobayashi,1 Takanori Komuro,2 and Hiroshi Sakayori2

1Department of Electronic Engineering, Gunma University, Kiryu, 376-8515 Japan

2Agilent Technologies Japan, Ltd., Tokyo, 192-8510 Japan

SUMMARY

This paper describes multitone curve-fitting algo-
rithms for accurate determination of intermodulation dis-
tortion products in the multitone testing of ADCs used in
communication applications and the like. Accuracy of our
curve-fitting algorithms for coherent sampling (input fre-
quencies known) and incoherent sampling (input frequen-
cies unknown) was validated by numerical simulations. We
found that—especially for incoherent sampling—these al-
gorithms provide better accuracy than conventional (single-
tone) curve-fitting algorithms. © 2003 Wiley Periodicals,
Inc. Electron Comm Jpn Pt 2, 86(8): 1–11, 2003; Published
online in Wiley InterScience (www.interscience.wiley.
com). DOI 10.1002/ecjb.10148
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1. Introduction

Multitone input signals

are used in evaluating the intermodulation distortion (IMD)
and noise power ratio [1–4] of ADCs used in measuring
equipment for communication applications, such as mobile

phone receiver analog front ends. n = 256 is used for ADSL
applications, for example. For simplicity we consider the
two-tone case (n = 2):

When the ADC has some nonlinearities, its output has
frequency components of pω1 + qω2 where p, q = 0, ±1, ±2,
±3, . . . The signal components are at ω1 and ω2 while the
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(1)
Fig. 1. Typical ADC output power spectrum for a

two-tone input signal. Signal components are 
located at ω1 and ω2, while intermodulation 

components are at mω2 + nω1 
(m, n = 0, ±1, ±2, ±3, . . . ).
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other components are mainly IMD due to ADC nonlinear-
ity. The evaluation of third-order IMD components at 2ω1

– ω2 and 2ω2 – ω1 is especially important because 2ω1 –
ω2 and 2ω2 – ω1 can be close to the signal frequencies of
ω1 and ω2 respectively when ω1 ≈ ω2 (Fig. 1). However,
testing methods for evaluating IMD of ADCs have not as
yet been established; one reason is that there are no standard
multitone signal generators, and another reason is that there
are no good IMD evaluation algorithms. In this paper we
will propose new algorithms which can evaluate IMD of
ADCs very accurately.

2. FFT and Curve-Fitting Algorithms

The FFT method is successful for single-tone ADC
testing [5–8], and is a good candidate for two-tone (or
multitone) testing. However, it has the following draw-
backs:

• Incoherent Sampling ADC Test Case [5, 6]:

Let us consider the case that the input signal and the
sampling clock of the ADC are synchronized (Fig. 2). If ω1

and ω2 are integer multiples of ωs/N, the FFT method can
be used to evaluate IMD directly. (Here ωs is the sampling
angular frequency and N is the number of the captured
data.) However, this condition (coherent sampling) is often
difficult to satisfy; the incoherent sampling case is de-
scribed below.

• Incoherent Sampling ADC Test Case [5, 6]:

Next let us consider the case that the input signal and
the sampling clock of the ADC are not synchronized (Fig.
3). For example, when we test an ADC embedded in a

system, its timebase may not be able to synchronize with
the input signal. In such cases, a window function must be
applied to the captured data before FFT [9], causing power
spectrum skirts around the signal frequencies of ω1, ω2

which may hide the most important IMD components at
2ω1 – ω2 and 2ω2 – ω1 (Fig. 4), because they are close to
ω1 and ω2, respectively.

We note that in the incoherent sampling ADC test case, the
signal generator for the analog inputs of ω1, ω2 and the pulse
generator for the sampling clock of ωs use different refer-
ence timing clocks (Fig. 3), whose timings can be slightly
different. Hence, even if we set ω1/(2π) of the signal gen-
erator to 1.0 MHz and ωs/(2π) of the pulse generator to 1.0
MHz, the ratio of ω1/ωs is not exactly one.

To overcome these problems, we have developed
two-tone (multitone) curve-fitting algorithms which are
extensions of single-tone curve-fitting algorithms (Fig. 5)
[5, 6, 8], and we have derived two algorithms for both
coherent and incoherent sampling cases: 

Fig. 2. An ADC test system using the coherent
sampling method. A signal generator for the 

input signal and a pulse generator for the 
sampling clock are synchronized with 

the same reference clock.

Fig. 4. ADC output power spectrum for two-tone signal
after windowing. Intermodulation power spectrum

components at 2ω1 – ω2 and 2ω2 – ω1 are 
hidden in the power spectrum 

skirts of ω1 and ω2.

Fig. 3. An ADC test system using the incoherent
sampling method. The input signal generator 

and the pulse generator for the sampling 
clock are not synchronized.
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1. For coherent sampling ADC testing, we know
exact ratios of the input angular frequencies to the sampling
angular frequency ω1/ωsand ω2/ωs.

2. For incoherent sampling testing, exact ratios are
not known (although we may have good estimates for their
values).

In both cases window functions are unnecessary and we can
evaluate IMD more precisely than with FFT methods. Sec-
tion 3 describes the coherent sampling algorithm and Sec-
tion 4 the incoherent sampling one. In both cases numerical
simulations were performed to evaluate the effectiveness of
the algorithms, and we found that—especially for incoher-
ent sampling—our algorithms provide better accuracy than
conventional (single-tone) curve-fitting algorithms.

3. Input Frequency Known Case

First let us consider the coherent sampling case (Fig.
2) where exact ratios of input frequencies to sampling
frequency are known a priori.

3.1. Problem formulation

Let us assume the following multitone input to the
ADC under test:

Suppose that we have N samples of ADC output data y(k)
at time 2πk/ωs (k = 0, 1, 2, . . . , N – 1) for a multitone input
of angular frequencies ωl’s, where the ratios of ωl/ωs’s are
known (l = 0, 1, 2, . . . , n – 1). We also assume that the ideal
ADC output is given by

Then we estimate al, bl, and C from N samples of ADC
output data record y(k) according to the following least-
squares-fit criteria:

3.2. Solution

Since Pe in Eq. (4) is equal to

and Pe should be minimized. Then

where l = 1, 2, . . . , n. Then we obtain the following
algorithm:

Here

Fig. 5. Explanation of a single-tone curve-fitting
algorithm. The dots show a typical ADC output for a

sinusoidal input, and the solid line shows its fitted sine
wave obtained by a sine curve-fitting algorithm. The

fitted sine wave represents the signal component in the
ADC output while the residual obtained by subtraction of

the fitted sine wave from the ADC output represents
noise and distortion components.

(2)

(3)

(4)

(5)
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F–1 can be obtained from F, for example, using the Cramer
formula.

3.3. Algorithm evaluation

Next we will consider how to obtain the IMD from
the algorithm.

Example 1: We have performed numerical simula-
tions for the three-tone case (n = 3), where we use the model

and estimate Al, θl, and C. Then we consider the residual
error 

and use the following model to estimate the third-order
IMD:

Applying the least-squares-fit criteria,

we can estimate D1, . . . , D6, φ1, . . . , φ6 with the same al-
gorithm as in Eq. (5). Table 1 shows numerical simulation
results for N = 8192, ω1/ωs= 0.09, ω2/ωs = 0.1006, and
ω3/ωs = 0.1084. We see that the algorithm in Eq. (5) can
estimate the IMD components as well as the signal compo-
nents with good accuracy.
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Example 2: Next we will consider the case that the
ADC output has Gaussian noise of n(k) (where the quanti-
zation noise of the ADC can be included):

Here n(k) is Gaussian noise with zero mean and standard
deviation of 0.125. Then we consider the following ADC
output model:

and we estimate A1, A2, A3, θ1, θ2, θ3, and C (Table 2).

We see that, in both examples, our algorithm can
estimate the parameter values very accurately.

Next let us consider how to obtain SNR using the
estimated values of a1, b1, a2, b2, . . . , an, bn, and C. The
signal power Ps and noise power Pn in the ADC output are
given by

Then we have the following:

4. Input Frequency Unknown Case

Next let us consider the incoherent sampling case
(Fig. 3) where exact ratios of input frequencies to sampling
frequency are not known a priori.

4.1. Problem formulation

Suppose that we have N samples of ADC output data
y(k) at time 2πk/ωs (k = 0, 1, 2, . . . , N – 1) for a two-tone
input of ω1 and ω2 and exact ratios of ω1/ωs and ω2/ωs are
unknown. We also assume that the ideal ADC output is
given by

Table 1. Simulation results of our proposed multitone
curve-fitting algorithm for a three-tone input signal

(input frequency known case)

Table 2. Simulation results of our proposed multitone
curve-fitting algorithm for a three-tone input signal with

Gaussian noise (input frequency known case)
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Then we estimate A1, A2, θ1, θ2, ω1, ω2 and C from N sam-
ples of ADC output data record y(k) according to the criteria

4.2. Solution

Since Pe is equal to

and Pe should be minimized, then

Then we have the following:

Here

These equations are nonlinear and we cannot solve them
analytically; we have to solve them numerically. To do that,
we will define R, S, T, U, V, and W (which indicate estima-
tion errors) as follows:

(7)

(6)
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When the estimated parameter values are equal to the actual
values, all of R, S, T, U, V, and W are zeros. Now we will
consider how to make an iteration algorithm to have the
estimation errors of R, S, T, U, V, and W all be zero. Let us
use a fitting function z(k) defined as

We will evaluate the fitting function z(k) using the ADC
output data. Letting A1, A2, ω1, ω2, θ1, θ2, and C be optimal
estimates of parameter values (i.e., in this case, R = S = T =
U = V = W = 0), the ADC output is approximated by

Next we will derive an iteration algorithm using Taylor
expansions:
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These equations are linear and we can estimate optimal
values of B1, B2, ψ1, ψ2, φ1, φ2, and D. Letting the estimated
values of B1, B2, ψ1, ψ2, φ1, φ2, and D be the new values of
A1, A2, ω1, ω2, θ1, θ2, C in the above equations, we have the
following iteration algorithm:

Here 

A1(n), A2(n), ω1(n), ω2(n), θ1(n), and θ2(n) are n-th iteration es-
timates for A1, A2, ω1, ω2, θ1, and θ2, respectively, and

Note that as A1(n), A2(n), ω1(n), ω2(n), θ1(n), and θ2(n) converge
to their corresponding actual values of A1, A2, ω1, ω2, θ1,
and θ2, then all of R(n), S(n), T(n), U(n), V(n), and W(n) con-
verge to zero.

(8)
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4.3. Algorithm evaluation

Tables 3 and 4 show numerical simulation results for
two-tone ADC testing in the input frequency unknown case,
where “actual value” means the actual parameter value used
in the simulation, “estimation” means the final estimated
value obtained by the algorithm, and “initial guess” means
the initial value used for the iteration to solve Eq. (8). (Table
4 is the case where Gaussian noise with zero mean, and
standard deviation of 0.125, is added to the ADC output.)
Tables 3(a) and 4(a) show the case where our two-tone
curve-fitting algorithm is applied, and Tables 3(b) and 4(b)
show the case where a conventional single-tone curve-fit-
ting algorithm (Fig. 5) is applied iteratively. We see that our
multitone curve-fitting algorithm can estimate the parame-
ter values more accurately; we confirm this by several
examples.

We can also estimate the IMD components by sub-
tracting the estimated two-tone curves from the ADC output
data and applying the multitone curve-fitting algorithm to
the residual (which is similar to the input known case in
Section 3).

5. Conclusions

We have developed multitone curve-fitting algo-
rithms for accurate determination of intermodulation dis-
tortion products in the multitone testing of ADCs used in
communication applications. Accuracy of our curve-fitting
algorithms for coherent sampling (input frequencies
known) and incoherent sampling (input frequencies un-
known) was validated by numerical simulations. We will
implement these algorithms in mixed-signal LSI testers
[10] after completing the following work:

• Improvement of our algorithms (especially in in-
put frequency unknown case) to reduce calcula-
tion load. 

Table 3. Simulation results for two-tone input (input
frequency unknown case, N = 8192)

Table 4. Simulation results of our proposed two-tone
curve-fitting algorithm when Gaussian noise is added

(input frequency unknown case)
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• Validation of our algorithms by applying them to
measured ADC data.
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