

地方大学のアナログ回路研究室の教育現場から

近年の高周波アナログ技術者の育成をどう行うか?

群馬大学大学院 工学研究科 電気電子工学専攻

小林春夫

発表内容

- 産業界からの暖かい風
- 「高周波アナログ技術者育成」へのアンチテーゼ
- これからどうするのか

発表内容

- 産業界からの暖かい風
- 「高周波アナログ技術者育成」へのアンチテーゼ
- これからどうするのか

気がついてみると 産業界から大学への暖かい風

電気電子をとりまく状況

- 少子化現象
- 若者の理工系離れ、電気電子離れ
- 熾烈な国際競争
- 電気電子工学科への求人は突出して多い

大学の電気電子分野の研究室 産業界から様々なご支援

電気電子の研究室、学生を大事にする風潮が生じつつある

海外インターンシップ

米国ユタ州ソルトレーク市に修士1年2名が4週間

Cirque社 (アルプス電気) 経済面を含めた全面支援

タッチパネル センサ インターフェース

アナログ回路が重要

CMOSオペアンプ設計のインターン

2008年10月6日-10月31日

10年前はインターンシップ 受け入れ企業は限られていた

- 現在、大学院進学予定4年生、修士1年生は全員 3週間前後のインターンシップ
- これまでお世話になった会社:

三洋電機、シャープ、住友電工、セイコーインスツルルネサステクノロジ、東芝、ソニー、東光、ヤマハアドバンテスト、ザインエレクトロニクス、NECエレ富士電機システムズ、フリースケール、日本TIアナログデバイセズ、ナショナルセミコンダクタCirque社(アルプス電気)

● STARC教育推進室からも様々な教育支援


ルネサステクノロジ社からの アナログ回路分野の寄附講座

2008年3月までの4年間 同社からの1億数千万円の寄附により 群馬大学に 2名の一流客員教授を招聘 小堀康功先生(パワエレ) 石原昇先生(高周波)

ルネサステクノロジ社との 連携大学院

恩田謙一 客員教授 パワエレ、電源回路 堀口真志 客員教授 マイコン内アナログ回路 群馬大学にて大学院の講義担当してもらう。

恩田謙一客員教授 (ルネサス、日立製作所)と 電源回路研究のメッカ バージニアエ科大学 Prof. F. Lee 研究室訪問

三洋電機・三洋半導体との 連携大学院

マイクロエレクトロニクス講座 山田節 客員教授 システムLSI

太田豊 客員教授

半導体デバイス

黒川敦 客員准教授

SOC物理設計

群馬大学にて大学院の講義担当してもらう。

産業界からの客員教授招聘

ソニー (萩原良昭氏 ISSCC2008 Program chair) 日本ビクター(近藤光氏) シャープ(飯塚邦彦氏) 東光(松田順一氏) アナログ技術ネットワーク(マイオ健二氏) 東工大(石原昇先生) アジレント・テクノロジー(小室貴紀氏) 等から一流の研究者を招聘

産業界との共同研究で 研究室のレベル向上

これまでの共同研究先

STARC, 三洋電機、ルネサステクノロジシャープ、住友電工、アジレント・テクノロジー東光、東芝マイクロエレクトロニクス東京測器研究所、ヤマハ

連名で学会発表。 聴衆の友人の一人:

「大手エレクトロニクス・メーカーが地方大学と 共同研究・学会発表することなどほとんどなかった」

発表内容

- 産業界からの暖かい風
- 「高周波アナログ技術者育成」へのアンチテーゼ
- これからどうするのか

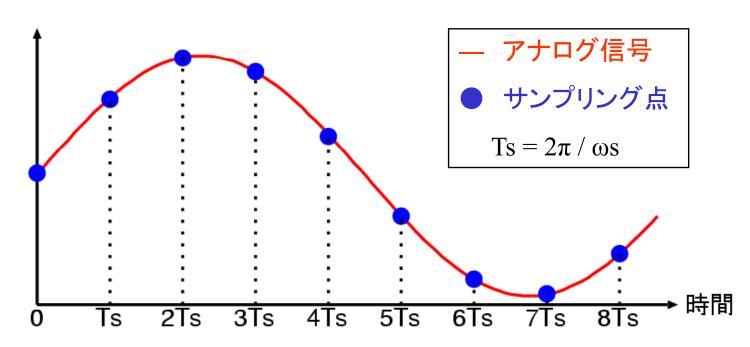
携帯電話の送受信回路がCMOS1チップ化

なぜ RF CMOSか

日本セットメーカー関係者

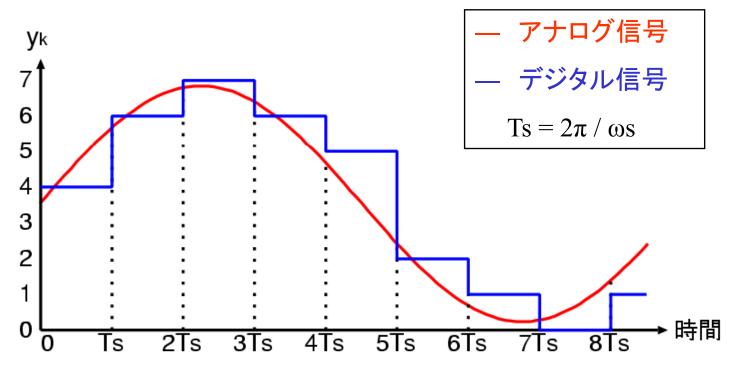
- RF CMOS の重要な点は、 バイポーラRF 回路をCMOS で置き換える ことではない。
- RF回路もCMOS化することで デジタル、ベースバンドアナログ(ADC等)と 1チップ化できることが最大のメリット。
- 1990年代前半に米国Fabless メーカーから 提案された。

RF CMOS は高周波技術だけでは 産業化できなかった


Abidi 先生(UCLA): 米国Fablessメーカー 1990年代前半に RF CMOSを製品化。 CMOS特性のばらつき大を デジタル補正技術を開発して 歩留まり90%以上に。

当時の日本メーカー:

RFで問題なのは CMOS化することではない。 CMOSは特性ばらつきが大きく産業化難。


デジタル信号の特徴(1)時間の離散化(サンプリング)

一定時間間隔のデータを取り、間のデータは捨ててしまう。

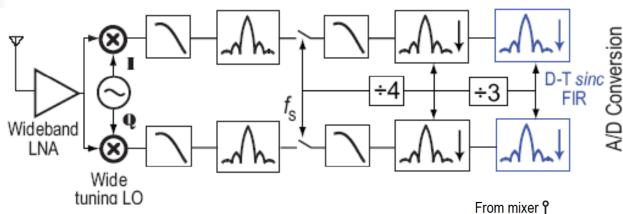
デジタル信号の特徴(2)振幅の離散化(信号レベルの数値化)

デジタル信号はアナログ信号レベルを 四捨五入(または切り捨て)

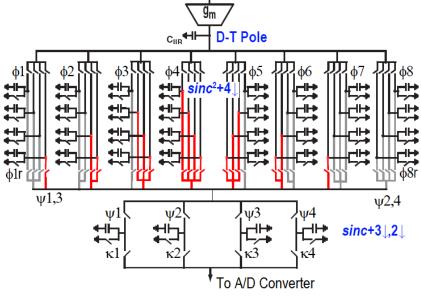
ー アジレント 小室貴紀氏との議論 ー

	振幅 連続	振幅 離散
時間 連続	領域1 アナログ	領域3 TDC、PWM
時間 離散	領域2 スイッチドキャパシタ サンプリング回路	領域4 デジタル

領域1: 従来の高周波アナログ。バイポーラ、化合物が得意


領域2, 3, 4: CMOSが得意

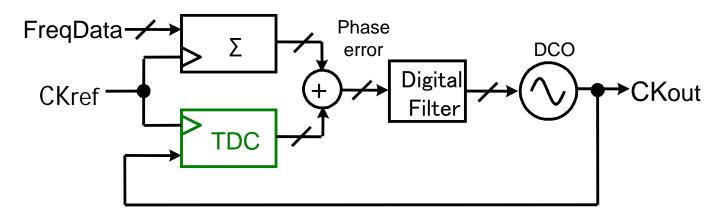
4つの領域 全てを用いるのが RF CMOS回路技術



ソフトウェア無線(受信機)

領域2 サンプリング技術を多用

- UCLA Abidi先生 TI社 Digital Radio Processor
- プログラマブル・ アナログ・サンプリング・フィルタ
- マルチレート信号処理



ソフトウェア無線 (送信機)

領域3 TDC (Time-to-Digital Converter) 技術

UCLA Abidi先生 TI社 Digital Radio Processor

送信機内のAll Digital PLL 回路

- 回路がデジタル、デジタル手法で設計・検証・テスト可能
- 小チップ面積化 (デジタルフィルタ)
- 高性能化 (フィルタ特性可変、低位相雑音)
- プログラマビリテイ

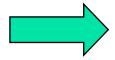
「高周波アナログ」は電子技術者の必須科目の一つにすぎない

産業界の電子技術者より 「高周波、アナログだけでは 会社で 電子技術者として生きていけない。 制御、信号処理、デジタル、ソフトウェア等 の知識も必要。」

国際的視野で産業全体を指導できる人材の育成

外資系電子計測器メーカー技術者より 「開発・生産関係は新興諸国が中心になる。 日本では 戦略眼・広い視野をもつ人材必要になる。

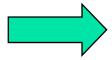
例: 国際通信規格を提案・推進


金融関係で投資対象分野を特定

高周波アナログ技術スキルだけでは不十分。」

日本ではこのような発想・意見・関心が少ない

「仕組み」を作る能力が必要


桐生八木節まつり 8月上旬 店の場所を仕切る。

仕組みを作る

(狩猟民族)

店の売り物をよくする。

仕組みの中でがんばる

(農耕民族)

高周波回路技術の 「仕組み」を作ったのはアジレント社(?)

高周波回路技術の方法論・CAD・電子計測器はアジレント社(ヒューレット・パッカード社)により基礎が造られている

ある研究者談: 高周波回路研究者は 所詮 お釈迦様の手のひらの上を 飛びまわっているだけだ。

お釈迦様 = アジレント

人間が設計を行う、 CADが設計を行うのではない

アナログ回路設計では 机上でよく考える

手計算で妥当性を検討する

CADで正確にチェックする

「便利さ」と「大きな仕事をする」は直結しない

司馬遷の史記 大作の歴史書 不自由な環境下で執筆

玄奘法師のインドからの経典 当時の社会に大きなインパクト

よいCAD ≠ よい設計

Maxwell方程式が重要

国内電子計測器メーカー技術者 「高周波アナログ回路関係の研究開発で、 設計結果と実験結果が異なったら、 最後は基本方程式のMaxwell方程式で 考えるべきである。」

理屈を考えることが重要

地道な学会発表が産業を下支え

日本のアナログ ベンチャー創業者より 「大学が 地道に学会・研究会に論文発表することは アナログ回路技術分野の隆盛一つの要因。」

著名な国際会議の発表だけでなく国内学会・研究会も社会的に重要

国内ベテランのアナログ技術者 「十年前には 国内のアナログ研究会は アンプとフィルタの発表しかなかった。」

「その分野の研究をする」ことだけで価値があることあり

発表内容

- 産業界からの暖かい風
- 「高周波アナログ技術者育成」へのアンチテーゼ
- これからどうするのか

山積する課題

国際競争の視点からの教育論

米国大学の先生:

米国では高校生は物理、化学、数学は必修

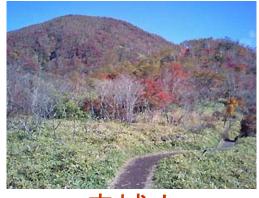
日本の普通高校の先生:

日本では普通高校での物理 I の履修率20%以下。中学までの勉強内容が軽くなり、物理履修のハードルが高くなっている。

日本の大学では受験生確保のため 受験科目を減らしている 電気電子工学科で「物理」でなく「化学」でも受験可

自分の基準で若者を測るのはやめる

JR両毛線 国定駅を通過する車中にて 私「群馬は赤城の山もあるし、


ここは国定忠治のふるさとか。。。」

群馬県出身の学生「その人だれですか。

赤城山に最初に登った人ですか。」

若者は自分の知らないことも たくさん知っているのであろう。

赤城山

若者の能力を信じる

4年生研究室配属時 「こんなことも知らないのか」 卒業研究発表時「こんなことも知らないのに なぜこんなことができるんだ」との驚き。

後生畏るべし。 いずくんぞ来者の今に如かざるを知らんや。 四十、五十にして聞こゆること無くんば、 これまた畏るるに足らざるのみ。

謝辞

有意義なコメントをいただきました 森村正直氏、小林謙介氏、 小室貴紀氏、酒寄寛氏、戸張勉氏 に謝意を表します。